Skip to main content
Log in

5,6-Dihydro-2H-pyranones and 5,6-dihydro-2H-pyridones and their derivatives modulate in vitro human T lymphocyte function

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to study the in vitro effects of δ-lactone 1, δ-lactam 3 and their enaminone derivatives 2 and 4, synthesized in our laboratory, on the proliferative responses of human lymphocytes, Th1 and Th2 cytokine secretion and intracellular redox status. Peripheral blood lymphocytes were isolated using differential centrifugation on a density gradient of Histopaque. They were cultured with mitogen concanavalin A (Con A) and with different concentrations of the compounds 1, 2, 3 and 4 (0.1–10 μM). Proliferation (MTT assay), IL-2, INFγ and IL-4 (Elisa kits), oxidative markers (intracellular glutathione, hydroperoxide and carbonyl protein contents) and cytotoxic effect (micronucleus test) were determined. The compounds 1 and 2 are immunosuppressive and decrease IL-2, INFγ and IL-4 secretion with a shift away from Th2 response to Th1 phenotype. The compounds 3 and 4 were immunostimulant and increased cytokine secretion with a shift away from Th1 response to Th2. The introduction of an enamine group to 1 and 3 to provide 2 and 4 seemed to attenuate their immunological properties. These immunomodulatory properties were, however, accompanied by an increase in lymphocyte intracellular oxidative stress, especially with 1 and 2 at high concentrations. In conclusion, the compounds 1, 2, 3 and 4 could be used to provide cell-mediated immune responses for novel therapies in T-cell mediated immune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leite L, Jansone D, Veveris M, Cirule H, Popelis Y, Melikyan G, Avetisyan A, Lukevics E (1999) Vasodilating and antiarrhythmic activity of heteryl lactones. Eur J Med Chem 34:859–865

    Article  CAS  Google Scholar 

  2. Veretennikova N, Skorova A, Jansone D, Lukevics E, Leite L, Melikyan G (2002) Synthesis and computer prediction of the pharmacological activity of aryl γ- and δ-lactams. Drug Future 27:457–461

    Google Scholar 

  3. Tanaka H, Kageyama K, Yoshimura N, Asada R, Kusumoto K, Miwa N (2007) Anti-tumor and anti-invasive effects of diverse delta-alkyllactones: dependence on molecular side-chain length, action period and intracellular uptake. Life Sciences 80:1851–1855

    Article  PubMed  CAS  Google Scholar 

  4. Kim EJ, Lim SS, Young Park S, Shin YK, Kim JS, Yoon Park JH (2008) Apoptosis of DU145 human prostate cancer cells induced by dehydrocostus lactone isolated from the root of Saussurea lappa. Food Chem Toxicol 46:3651–3658

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka H, Kageyama K, Asada R, Yoshimura N, Miwa N (2008) Promotive effects of hyperthermia on the cytostatic activity to Ehrlich ascites tumor cells by diverse delta-alkyllactones. Exp Oncol 30:143–147

    PubMed  CAS  Google Scholar 

  6. Yao T, Larock RC (2003) Synthesis of isocoumarins and a-pyrones via electrophilic cyclization. J Org Chem 68:5936–5942

    Article  PubMed  CAS  Google Scholar 

  7. Goel A, Ram VJ (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron 65:7865–7913

    Article  CAS  Google Scholar 

  8. Muhsin M, Gricks C, Kirkpatrick P (2004) Pemetrexed disodium. Nature Rev Drug Discov 3:825–826

    Article  CAS  Google Scholar 

  9. Konaklieva MI, Plotkin BJ (2005) Lactones: generic inhibitors of enzymes? Mini-Rev Med Chem 5:73–95

    PubMed  CAS  Google Scholar 

  10. Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202

    Article  PubMed  CAS  Google Scholar 

  11. Bergh JCS, Tötterman TH, Termander BC, Strandgården KA, Gunnarsson POG, Nilsson BI (1997) The first clinical pilot study of roquinimex (Linomide) in cancer patients with special focus on immunological effects. Cancer Invest 15:204–211

    Article  PubMed  CAS  Google Scholar 

  12. Calixto JB, Campos MM, Otuki MF, Santos ARS (2004) Anti-inflammatory compounds of plants origin. Modulation of proinflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93–103

    Article  PubMed  CAS  Google Scholar 

  13. Koch E, Klaas CA, Rüngeler P, Castro V, Mora G, Vichnewski W, Merfort I (2001) Inhibition of inflammatory cytokine production and lymphocyte proliferation by structurally different sesquiterpene lactones correlates with their effect on activation of NF-κB. Biochem Pharmacol 62:795–801

    Article  PubMed  CAS  Google Scholar 

  14. Cho JY, Baik KU, Jung JH, Park MH (2009) In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur J Pharmacol 398:399–407

    Article  Google Scholar 

  15. Delves P, Martin S, Burton D, Roitt I (2006) Roitt’s essential immunology, 11th edn. Wiley–Blackwell, Hoboken, NJ

    Google Scholar 

  16. Mossman TT, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146

    Article  Google Scholar 

  17. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR (1991) Differing lymphokine profiles of functional subset of human CD4 and CD8 T cell clones. Science 254:279–282

    Article  PubMed  CAS  Google Scholar 

  18. Hildeman DA, Mitchell T, Teague TK (1999) Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10:735–744

    Article  PubMed  CAS  Google Scholar 

  19. Cope AP (2002) Studies of T-cell activation in chronic inflammation. Arthritis Res 4:197–211

    Article  Google Scholar 

  20. Shan X, Aw TY, Jones DP (1994) Glutathione-dependent protection against oxidative injury. Pharmacol Ther 47:61–71

    Article  Google Scholar 

  21. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  22. Hadzic T, Li L, Cheng N, Walsh SA, Spitz DR, Knudson CM (2005) The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. J Immunol 175:7965–7972

    PubMed  CAS  Google Scholar 

  23. Leite L, Jansone D, Fleisher M, Kazhoka H, Popelis J, Veretennikova N, Shestakova I, Domracheva I, Lukevics E (2004) Synthesis and cytotoxic activity of 4-substituted 3-cyano-6, 6-dimethyl-5, 6-dihydro-2-pyranones. Chem Heterocycl Comp 40:715–724

    Article  CAS  Google Scholar 

  24. Avetisyan AA, Dangyan MT (1997) The chemistry of Δαβ-butenolides. Russ Chem Rev 46:643–649

    Article  Google Scholar 

  25. Baldwin JJ, Mensler K, Ponticello GS (1978) A novel naphthyridinone synthesis via enamine cyclization. J Org Chem 43:4878–4880

    Article  CAS  Google Scholar 

  26. Jansone D, Belyakov S, Fleisher M, Leite L, Lukevics E (2007) Molecular and crystal structure of 4, 6, 6-trimethyl-2-oxo-5, 6-dihydro-2H-pyran-3-carbonitrile and 4, 6, 6-trimethyl-2-oxo-1, 2, 5, 6 tetrahydropyridine-3-carbonitrile. Chem Heterocycl Comp 43:1374–1378

    Article  CAS  Google Scholar 

  27. Mossman T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  28. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  29. Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E (2003) HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Res 534:65–75

    PubMed  CAS  Google Scholar 

  30. Ritchie AJ, Yam AO, Tanabe KM, Rice SA, Cooley MA (2003) Modification of in vivo and in vitro T- and B-cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone. Infect Immun 71:4421–4431

    Article  PubMed  CAS  Google Scholar 

  31. Roth J, De Souza GEP (2001) Fever induction pathways: evidence from responses to systemic or local cytokine formation. Braz J Med Biol Res 34:301–314

    Article  PubMed  CAS  Google Scholar 

  32. Telford GD, Williams WP, Appleby TP, Sewell H, Stewart GS, Bycroft BW, Pritchard DI (1998) The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66:36–42

    PubMed  CAS  Google Scholar 

  33. Ritchie AJ, Jansson A, Stallberg J, Nilsson P, Lysaght P, Cooley MA (2005) The Pseudomonas aeruginosa quorum-sensing molecule N-3-(oxododecanoyl)-l-homoserine lactone inhibits T-cell differentiation and cytokine production by a mechanism involving an early step in T-cell activation. Infect Immun 73:1648–1655

    Article  PubMed  CAS  Google Scholar 

  34. Cornish GH, Sinclair LV, Cantrell DA (2006) Differential regulation of T-cell growth by IL-2 and IL-15. Blood 108:600–608

    Article  PubMed  CAS  Google Scholar 

  35. Mond JJ, Balapure A, Feuerstein N, June JH, Brunswick M, Lindsberg ML, Witherspoon K (1990) Protein kinase C activation in B cells by indolactam inhibits anti-Ig- mediated phosphatidylinositol bisphosphate hydrolysis but not B cell proliferation. J Immunol 144:451–455

    PubMed  CAS  Google Scholar 

  36. Zanni MP, Greyerz SV, Schnyder B, Brander CK, Frutig K, Hari Y, Valitutti S, Pichler WJ (1998) HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human α β T lymphocytes. J Clin Invest 102:1591–1598

    Article  PubMed  CAS  Google Scholar 

  37. Fidelus RK, Tsan MF (1986) Enhancement of intracellular glutathione promotes lymphocyte activation by mitogen. Cell Immunol 97:155–163

    Article  PubMed  CAS  Google Scholar 

  38. Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, Iaccarino I, Filosa S (2004) Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death Differ 11:823–831

    Article  PubMed  CAS  Google Scholar 

  39. Frossi B, De Carli M, Piemonte M, Pucillo C (2008) Oxidative microenvironment exerts an opposite regulatory effect on cytokine production by Th1 and Th2 cells. Mol Immunol 45:58–64

    Article  PubMed  CAS  Google Scholar 

  40. Phillips BJ, James TEB, Andersen D (1984) Genetic damage in CHO cells exposed to enzymatically generated active oxygen species. Mut Res 126:265–271

    Article  CAS  Google Scholar 

  41. Bolognesi C (2003) Genotoxicity of pesticides: a review of human biomonitoring studies. Mut Res/Rev Mut Res 543:251–272

    CAS  Google Scholar 

  42. Calviello G, Piccioni E, Boninsegna A, Tedesco B, Maggiano N, Serini S, Wolf FI, Palloza P (2006) DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol Appl Pharmacol 211:87–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the French Foreign Office (International Research Extension Grant TASSILI 08MDU723) and by the Algerian Research Investigation Office (CNEPRU, PNR).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Merzouk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamed, Y.B., Medjdoub, A., Kara, B.M. et al. 5,6-Dihydro-2H-pyranones and 5,6-dihydro-2H-pyridones and their derivatives modulate in vitro human T lymphocyte function. Mol Cell Biochem 360, 23–33 (2012). https://doi.org/10.1007/s11010-011-1040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1040-x

Keywords

Navigation