Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Chitosan prevents oxidative stress-induced amyloid β formation and cytotoxicity in NT2 neurons: involvement of transcription factors Nrf2 and NF-κB

Molecular and Cellular Biochemistry Aims and scope Submit manuscript

This article was retracted on 05 February 2022

This article has been updated

Abstract

Increased oxidative stress is a widely accepted factor in the development and progression of Alzheimer’s disease. Here, we introduce chitosan, an antioxidant oligosaccharide, as a protective agent against H2O2/FeSO4-induced cell death in the NT2 neural cell line. Chitosan not only protects the neurons against cell death, as measured by MTT and caspase-3 activity, but also decreases amyloid β formation. NT2 neurons can be used to elucidate the relationship between oxidative stress and Aβ formation. We induced Aβ formation through oxidative stress in NT2 neurons and studied the effect of chitosan. We demonstrate that chitosan can be neuroprotective by suppressing Aβ formation. We further show that chitosan exerts its protective effect by up-regulation of HO-1, γ-GCS, Hsp-70, and Nrf2, while it inhibits activation of caspase-3 and NF-κB. Chitosan or chitosan derivatives have potential value as neuroprotective agents, particularly with regard to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

Abbreviations

AD:

Alzheimer’s disease

AREs:

Antioxidant response elements

DMEM:

Dulbecco’s modified Eagle’s medium

DTT:

Dithiothreitol

DTNB:

Dithionitrobenzoic acid

ECL:

Electrochemiluminescence

ELISA:

Sandwich enzyme-linked immunosorbent

γ-GCS:

γ-glutamylcysteine synthetase

HO-1:

Hemeoxigenase-1

Hsp-70:

Heat shock protein-70

MTT:

3-[4, 5-dimethylthiazol-2-yl]-2, 5-dephenyl tetrazolium bromide

NF-κB:

Nuclear factor- κB

Nrf2:

Nuclear factor-erythroid 2 p45-related factor 2

PBS:

Phosphate buffered saline

PMSF:

Phenylmethanesulfonyl fluoride

tBHQ:

tert-butylhydroquinone

References

  1. Gotz ME, Kunig G, Riederer P et al (1994) Oxidative stress: free radical production in neural degeneration. J Pharm Therap 63:37–122

    CAS  Google Scholar 

  2. Butterfield DA, Drake J, Pocernich CB et al (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 7:548–554

    CAS  PubMed  Google Scholar 

  3. Behl C, Davis JB, Lesley R et al (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. J Cell 77:817–827

    CAS  Google Scholar 

  4. Chen Q, Liu S, Du Y et al (2006) Carboxymethyl-chitosan protects rabbit chondrocytes frominterleukin-1β-induced apoptosis. Eur J Pharmacol 541:1–8

    CAS  PubMed  Google Scholar 

  5. Jackel RJ, Townsend JA, Kraft AD et al (2007) Nrf2-mediated protection against 6-hydroxydopamine. J Brain Res 1144:192–201

    Google Scholar 

  6. Wurck JC, Goetz EM, Herdegen T et al (2008) Kavalactones protects neural cells against amyloid β peptide-induced neurotoxicity via ERK1/2-dependent Nrf2-activation. J Mol Pharmacol 73:1785–1795

    Google Scholar 

  7. Boothby LA, Doering PL (2005) Vitamin C and Vitamin E for Alzheimer’s disease. Ann Pharmacother 39:2073–2080

    CAS  PubMed  Google Scholar 

  8. Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    CAS  Google Scholar 

  9. Pae HO, Seo WG, Kim NY (2001) Induction of granulocytic differentiation in acute promyelocytic leukemia cells (HL-60) by water-soluble chitosan oligomer. Leuk Res 25:339–346

    CAS  PubMed  Google Scholar 

  10. Yoon HJ, Park HS, Bom HS et al (2005) Chitosan oligosaccharide inhibits 203HgCl2-induced genotoxicity in mice: micronuclei occurrence and chromosomal aberration. Arch Pharm Res 28:1079–1085

    CAS  PubMed  Google Scholar 

  11. Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11:1699–1701

    CAS  PubMed  Google Scholar 

  12. Kamil J, Jeon YJ, Shahidi F (2002) Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring (Clupea harengus). Food Chem 79:69–77

    CAS  Google Scholar 

  13. Jeon TI, Hwang SG, Park NG et al (2003) Antioxidative effect of chitosan on chronic carbon tetrachloride induced hepatic injury in rats. Toxicology 187:67–73

    CAS  PubMed  Google Scholar 

  14. Yoon HJ, Moon ME, Park HS et al (2008) Effects of chitosan oligosaccharide (COS) on the glycerol-induced acute renal failure in vitro and in vivo. Food Chem Toxicol 46:710–716

    CAS  PubMed  Google Scholar 

  15. Tokora A, Kobayashi M, Tatekawa N et al (1989) Protective effect of N-acetyl chitose on Listeria monocytogenes infection in mice. Microbiol Immunol 33:357–367

    Google Scholar 

  16. Nishimura K, Nishimura S, Nishi N et al (1984) Immunological activity of chitin and its derivatives. Vaccine 2:93–99

    CAS  PubMed  Google Scholar 

  17. Hirano S (1989) Production and application of chitin and chitosan in Japan. In: Skjak-Braek G, Anthonsen T, Sandford P (eds) Chitin and chitosan. Elsevier Applied Science, London, pp 37–43

    Google Scholar 

  18. Kendra DF, Christian D, Hadwiger LA (1989) Chitosan oligomers from Fusarium solani/pea interactions, chitinase/β-glucanase digestion of sporelings and from fungal wall chitin actively inhibit fungal growth and enhance disease resistance. Physiol Mol Plant Pathol 35:215–230

    CAS  Google Scholar 

  19. Uchida Y, Izume M, Ohtakara A (1989) Preparation of chitosan oligomers with purified chitosanase and its application. In: Skjak-Braek G, Anthonsen T, Sandford P (eds) Chitin and chitosan. Elsevier Applied Science, London, pp 373–382

    Google Scholar 

  20. Pleasure SJ, Page C, Lee VMY (1992) Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expression exogenous proteins in terminally differentiated neurons. J Neurosci 12:1802–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tamango E, Bardini P, Obbili A et al (2002) Oxidative stress increases expression and activity of BACE in NT2 neurons. J Neurobiol Dis 10:279–288

    Google Scholar 

  22. Kutuk O, Basaga H (2003) Aspirin prevents apoptosis and NF-kappaB activation induced by H2O2 in HeLa cells. Free Radic Res 37:1267–1276

    CAS  PubMed  Google Scholar 

  23. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  24. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  25. Miller DK (1997) The role of caspase family of cysteine proteases in apoptosis. Semin Immunol 9:35–49

    CAS  PubMed  Google Scholar 

  26. Keller JN, Kindy MS, Holtsberg FW et al (1998) Mitochondrial MnSOD prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidaion and mitochondrial dysfunction. J Neurosci 18:687–697

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kruman II, Culmsee C, Chan SL et al (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Frederriske PH, Garland D, Zigler JS et al (1996) Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (A-beta) in mammalian lens and A-beta has toxic effects on lens epithelial cells. J Biol Chem 271:10169–10174

    Google Scholar 

  29. Misonou H, Morishima-Kawashima M, Ihara Y (2000) Oxidative stress induces intracellular accumulation of amyloid β-protein (Aβ) in neuroblastoma cells. Biochemistry 39:6951–6959

    CAS  PubMed  Google Scholar 

  30. Paola D, Domenicotti C, Nitti M et al (2000) Oxidative stress induces increase in intracellular amyloid β-protein production and selective activation of βI and βII PKCs in NT2 cells. J Biochem Biophys Res Commun 268:642–646

    CAS  Google Scholar 

  31. Tenhunen R, Marver HS, Schmid R (1969) Microsomal heme oxygenase characterization of the enzyme. J Biol Chem 244:6388–6394

    CAS  PubMed  Google Scholar 

  32. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    CAS  PubMed  Google Scholar 

  33. Ponka P (1999) Cell biology of heme. Am J Med Sci 318:241–256

    CAS  PubMed  Google Scholar 

  34. McNally SJ, Harrison EM, Ross JA et al (2007) Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 19:165–172

    CAS  PubMed  Google Scholar 

  35. Ogborne RM, Rushworth SA, Charalambos CA et al (2004) Heme oxygenase-1: a target for dietary antioxidants. Biochem Soc Trans 32:1003–1005

    CAS  PubMed  Google Scholar 

  36. Hill-Kapturczak N, Thamilselvan V, Liu FY et al (2001) Mechanism of heme oxygenase 1 induction by curcumin in human renal proximal tubule cells. Am J Physiol Renal Physiol 281:F851–F859

    CAS  PubMed  Google Scholar 

  37. Juan SH, Cheng TH, Lin HC et al (2005) Mechanism of concentration dependent induction of heme oxygenase-1 by resveratrol in human aortic smooth muscle cells. Biochem Pharmacol 69:41–48

    CAS  PubMed  Google Scholar 

  38. Alam J, Stewart D, Touchard C et al (1999) Nrf2, a cap’n’collar transcription factor, regulates induction of the heme oxygenase-1gene. J Biol Chem 274:26071–26078

    CAS  PubMed  Google Scholar 

  39. Alam J, Wicks C, Stewart D et al (2000) Mechanism of heme oxygenase-1 gene activation by cadmium in MCF7 mammary epithelial cells. J Biol Chem 275:27694–27702

    CAS  PubMed  Google Scholar 

  40. Balogun E, Hoque M, Gong P et al (2003) Curcumin activates the heam oxygenase-1 gene via regulation of Nrf2 and the antioxidant response element. Biochem J 371:887–895

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rordorf G, Koroshetz WJ, Bonventre JV (1991) Heat shock protects cultured neurons from glutamate toxicity. Neuron 7:1043–1051

    CAS  PubMed  Google Scholar 

  42. Sato K, Saito H, Matsuki N (1996) HSP70 is essential to the neuroprotective effect of heat-shock. Brain Res 740:117–123

    CAS  PubMed  Google Scholar 

  43. Currie RW, Ellison JA, White RF et al (2000) Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res 863:169–181

    CAS  PubMed  Google Scholar 

  44. Chiu JH, Tsou MT, Tung HH et al (2003) Preconditioned somatothermal stimulation on median nerve territory increases myocardial heat shock protein 70 and protects rat hearts against ischemiareperfusion injury. J Thorac Cardiovasc Surg 125:678–685

    CAS  PubMed  Google Scholar 

  45. Kelly KJ (2005) Heat shock (stress response) proteins and renal ischemia/reperfusion injury. Contrib Nephrol 148:86–106

    CAS  PubMed  Google Scholar 

  46. Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    CAS  PubMed  Google Scholar 

  47. Wild AC, Moinova HR, Mulcahy RT (1999) Regulation of γ-Glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274:33627–33636

    CAS  PubMed  Google Scholar 

  48. Lee J, Johnson JA (2004) An important role of Nrf2-ARE pathway in cellular defense mechanism. J Biochem Mol Biol 37:139–143

    CAS  PubMed  Google Scholar 

  49. Sun X, Erb H, Murphy TH (2005) Coordinate regulation of glutathione metabolism in astrocytes by Nrf2. J Biochem Biophys Res Commun 326:371–377

    CAS  Google Scholar 

  50. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Ann Pharmacol Toxicol 43:233–260

    CAS  Google Scholar 

  51. Kalayarasan S, Prabhu PN, Sriram N et al (2009) Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. Europ J Pharmacol 606:162–171

    CAS  Google Scholar 

  52. Longpre F, Garneau P, Christen Y et al (2006) Protection by EGb 761 against β-amyloid induced neurotoxicity: Involvment of NF-κB, SIRT1, and MAPKs pathways and inhibition of amyloid fibril formation. Free Radic Biol Med 41:1781–1794

    CAS  PubMed  Google Scholar 

  53. Wertkin AM, Turner RS, Pleasure SJ et al (1993) Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor and produce intracellular beta amyloid or A 4 peptides. J Proc Natl Acad Sci USA 90:9513–9517

    CAS  Google Scholar 

  54. Turner RS, Suzuki N, Chuyung AS et al (1996) Amyloid beta 40 and beta 42 are generated intracellulary in cultured human neurons and their secretion increases with maturation. J Biol Chem 271:8966–8970

    CAS  PubMed  Google Scholar 

  55. Tamango E, Aragno M, Parola M et al (2000) NT2 neurons, a classical model for Alzheimer’s disease, are highly susceptible to oxidative stress. Neuroreport 11:1865–1869

    Google Scholar 

  56. Martin D, Rojo AI, Salinas M et al (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279:8919–8929

    CAS  PubMed  Google Scholar 

  57. Feinstein DL, Galea E, Reis DJ (1997) Suppression of glial nitric oxide synthase induction by heat shock: effects on proteolytic degradation of IkappaB-alpha. Nitric Oxide 1:167–176

    CAS  PubMed  Google Scholar 

  58. Guzhova IV, Darieva ZA, Melo AR et al (1997) Major stress protein Hsp70 interacts with NF-κB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2:132–139

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ran R, Lu A, Zhang L et al (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 18:1466–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fujikake N, Nagia Y, Popiel HA et al (2008) Heat shock transcription factor 1-activating compounds suppress polyglutamine-induced neurodegeneration through induction of multiple molecular chaperones. JBC 283:26188–26197

    CAS  Google Scholar 

  61. Chen X, Dodd G, Thomas S et al (2006) Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inflammatory gene expression. Am J Physiol Heart Circ Physiol 290:1862–1870

    Google Scholar 

  62. Anraku M, Kabashima M, Maruyama T et al (2008) Antioxidant protection of human serum albumin by chitosan. Int J Biol Macromol 43:159–164

    CAS  PubMed  Google Scholar 

  63. Mendis E, Kim MM, Rajapakse N et al (2007) An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharide. Life Sci 80:2118–2127

    CAS  PubMed  Google Scholar 

  64. Perskvist N, Long M, Stendahl O et al (2002) Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/Bcl-xL via an oxygen-dependent pathway. J Immunol 168:6358–6365

    CAS  PubMed  Google Scholar 

  65. Jiang M, Zhuge X, Yang Y et al (2009) The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett 454:239–243

    CAS  PubMed  Google Scholar 

  66. Zhou S, Yang Y, Gu X et al (2008) Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett 444:270–274

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

F. KH thanks National elite fund, Iran, for the award of Young Scientist Research Fellowship. This study was supported partially by Shahid Beheshti University (M.C.) Research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariba Khodagholi.

About this article

Cite this article

Khodagholi, F., Eftekharzadeh, B., Maghsoudi, N. et al. RETRACTED ARTICLE: Chitosan prevents oxidative stress-induced amyloid β formation and cytotoxicity in NT2 neurons: involvement of transcription factors Nrf2 and NF-κB. Mol Cell Biochem 337, 39–51 (2010). https://doi.org/10.1007/s11010-009-0284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0284-1

Keywords

Navigation