Skip to main content
Log in

Cloning and identification of microRNAs in bovine alveolar macrophages

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs found in both animal and plant cells. These ~19–26 nucleotide (nt) single-stranded RNAs play role in regulating gene/protein expression by either directly binding to mRNAs and inducing degradation of their target or by translational inhibition of protein expression. In this report, we described the cloning and identification of 22 microRNAs from bovine alveolar macrophage (AM). Eleven of the 22 miRNAs were novel and have not been previously identified in any species, while eight previously unidentified bovine miRNAs were identical to known ortholog miRNAs from human and/or rat (Bta-miR-141, Bta-miR-187, Bta-miR-191, Bta-miR-448, Bta-miR-589, Bta-miR-873, Bta-miR-463, and Bta-miR-562). These results add to the growing database of new miRNAs and suggest new biological functions for miRNAs in AMs. Specially, our data implicates miRNA regulation of antimicrobial targets in alveolar macrophages of bovine lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

miRNAs:

MicroRNAs

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  PubMed  CAS  Google Scholar 

  2. Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95. doi:10.1016/j.biocel.2008.09.005

    Article  PubMed  CAS  Google Scholar 

  3. Dennis C (2002) Small RNAs: the genome’s guiding hand? Nature 420:732. doi:10.1038/420732a

    Article  PubMed  CAS  Google Scholar 

  4. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. doi:10.1038/35002607

    Article  PubMed  CAS  Google Scholar 

  5. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36. doi:10.1016/S0092-8674(03)00231-9

    Article  PubMed  CAS  Google Scholar 

  6. Szafranska AE, Davison TS, Shingara J, Doleshal M, Riggenbach JA, Morrison CD, Jewell S, Labourier E (2008) Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J Mol Diagn 10:415–423. doi:10.2353/jmoldx.2008.080018

    Article  PubMed  CAS  Google Scholar 

  7. Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563–568. doi:10.1016/j.gde.2005.08.005

    Article  PubMed  CAS  Google Scholar 

  8. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833. doi:10.1038/nature03552

    Article  PubMed  CAS  Google Scholar 

  9. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230. doi:10.1038/nature03076

    Article  PubMed  CAS  Google Scholar 

  10. Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY, Srivastava D (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 105(46):17830–17835

    Article  PubMed  Google Scholar 

  11. Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831

    Google Scholar 

  12. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13:807–818

    Google Scholar 

  13. Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–764

    Google Scholar 

  14. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  PubMed  CAS  Google Scholar 

  15. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623. doi:10.1146/annurev.immunol.17.1.593

    Article  PubMed  CAS  Google Scholar 

  16. Sassen S, Miska EA, Caldas C (2008) MicroRNA: implications for cancer. Virchows Arch 452:1–10. doi:10.1007/s00428-007-0532-2

    Article  PubMed  CAS  Google Scholar 

  17. Coutinho LL, Matukumalli LK, Sonstegard TS, Van Tassell CP, Gasbarre LC, Capuco AV, Smith TP (2007) Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues. Physiol Genomics 29:35–43. doi:10.1152/physiolgenomics.00081.2006

    PubMed  CAS  Google Scholar 

  18. Russell DG, Dant J, Sturgill-Koszycki S (1996) Mycobacterium avium- and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J Immunol 156:4764–4773

    PubMed  CAS  Google Scholar 

  19. Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG (1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J Immunol 160:1290–1296

    PubMed  CAS  Google Scholar 

  20. Deretic V, Fratti RA (1999) Mycobacterium tuberculosis phagosome. Mol Microbiol 31:1603–1609. doi:10.1046/j.1365-2958.1999.01279.x

    Article  PubMed  CAS  Google Scholar 

  21. Dieli F, Troye-Blomberg M, Ivanyi J, Fournie JJ, Bonneville M, Peyrat MA, Sireci G, Salerno A (2000) Vgamma9/Vdelta2 T lymphocytes reduce the viability of intracellular Mycobacterium tuberculosis. Eur J Immunol 30:1512–1519. doi:10.1002/(SICI)1521-4141(200005)30:5<1512::AID-IMMU1512>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  22. Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152

    PubMed  CAS  Google Scholar 

  23. Smith RA, Alvarez AJ, Estes DM (2001) The P2X7 purinergic receptor on bovine macrophages mediates mycobacterial death. Vet Immunol Immunopathol 78:249–262. doi:10.1016/S0165-2427(01)00245-8

    Article  PubMed  CAS  Google Scholar 

  24. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113

    PubMed  CAS  Google Scholar 

  25. Niepmann M (2009) Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle 8(10):1473–1477

    PubMed  CAS  Google Scholar 

  26. Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A (2008) miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 48:648–656. doi:10.1016/j.jhep.2008.01.019

    Article  PubMed  CAS  Google Scholar 

  27. Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486. doi:10.1073/pnas.0605298103

    Article  PubMed  CAS  Google Scholar 

  28. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609. doi:10.1073/pnas.0610731104

    Article  PubMed  CAS  Google Scholar 

  29. Xu G, Li Y, Yang J, Zhou X, Yin X, Liu M, Zhao D (2007) Effect of recombinant Mce4A protein of Mycobacterium bovis on expression of TNF-alpha, iNOS, IL-6, and IL-12 in bovine alveolar macrophages. Mol Cell Biochem 302:1–7. doi:10.1007/s11010-006-9395-0

    Article  PubMed  CAS  Google Scholar 

  30. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26:2799–2803. doi:10.1038/sj.onc.1210083

    Article  PubMed  CAS  Google Scholar 

  31. Talotta F, Cimmino A, Matarazzo MR, Casalino L, De Vita G, D’Esposito M, Di Lauro R, Verde P (2008) An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28(1):73–84

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H (2008) miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88:1358–1366. doi:10.1038/labinvest.2008.94

    Article  PubMed  CAS  Google Scholar 

  33. Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, Wang Y, Ning H, Zhang S, Chen W, Babiuk LA, Chang Z (2004) Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 560:141–146. doi:10.1016/S0014-5793(04)00087-0

    Article  PubMed  CAS  Google Scholar 

  34. Ramachandra L, Smialek JL, Shank SS, Convery M, Boom WH, Harding CV (2005) Phagosomal processing of Mycobacterium tuberculosis antigen 85B is modulated independently of mycobacterial viability and phagosome maturation. Infect Immun 73:1097–1105. doi:10.1128/IAI.73.2.1097-1105.2005

    Article  PubMed  CAS  Google Scholar 

  35. Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349:59–68. doi:10.1016/j.bbrc.2006.07.207

    Article  PubMed  CAS  Google Scholar 

  36. Gou D, Zhang H, Baviskar PS, Liu L (2007) Primer extension-based method for the generation of a siRNA/miRNA expression vector. Physiol Genomics 31:554–562. doi:10.1152/physiolgenomics.00005.2007

    Article  PubMed  CAS  Google Scholar 

  37. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707. doi:10.1158/0008-5472.CAN-07-1936

    Article  PubMed  CAS  Google Scholar 

  38. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93:1600–1608. doi:10.1210/jc.2007-2696

    Article  PubMed  CAS  Google Scholar 

  39. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526. doi:10.1016/j.pharmthera.2007.09.004

    Article  PubMed  CAS  Google Scholar 

  40. Pedersen I, David M (2008) MicroRNAs in the immune response. Cytokine 43:391–394. doi:10.1016/j.cyto.2008.07.016

    Article  PubMed  CAS  Google Scholar 

  41. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402. doi:10.1159/000113489

    Article  PubMed  CAS  Google Scholar 

  42. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136. doi:10.1038/sj.onc.1210856

    Article  PubMed  CAS  Google Scholar 

  43. Chan SH, Wu CW, Li AF, Chi CW, Lin WC (2008) miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res 28:907–911

    PubMed  Google Scholar 

  44. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX, Shao JY (2008) MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14:2348–2360. doi:10.1261/rna.1034808

    Article  PubMed  CAS  Google Scholar 

  45. Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva WA Jr, Moreira AC, Castro M (2008) MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 94(1):320–323

    Article  PubMed  CAS  Google Scholar 

  46. Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, Nguyen LT, Hijiya N, Uchida T, Sato F, Mimata H, Seto M, Moriyama M (2008) Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol 216:418–427. doi:10.1002/path.2437

    Article  PubMed  CAS  Google Scholar 

  47. Suh BC, Kim JS, Namgung U, Ha H, Kim KT (2001) P2X7 nucleotide receptor mediation of membrane pore formation and superoxide generation in human promyelocytes and neutrophils. J Immunol 166:6754–6763

    PubMed  CAS  Google Scholar 

  48. Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2:113–121

    PubMed  Google Scholar 

  49. Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44:47–54. doi:10.1016/j.ymeth.2007.09.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by a sub-project of National Basic Research Program of China (No: 2006CB504401), the National Natural Science Foundation of China (No: 30860207), the Key Project Cultivation Fund of Scientific and Technological Innovation Project in Universities (No: 706057), the Scientific Research Foundation of Ningxia University (No: ZR200724) and the Scientific Research Project of Colleges and Universities in Ningxia Hui Autonomous Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Zhang, Y., Jia, H. et al. Cloning and identification of microRNAs in bovine alveolar macrophages. Mol Cell Biochem 332, 9–16 (2009). https://doi.org/10.1007/s11010-009-0168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0168-4

Keywords

Navigation