Skip to main content
Log in

An Analytic Expression for the Distribution of the Generalized Shiryaev–Roberts Diffusion

The Fourier Spectral Expansion Approach

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We consider the quickest change-point detection problem where the aim is to detect the onset of a pre-specified drift in “live”-monitored standard Brownian motion; the change-point is assumed unknown (nonrandom). The topic of interest is the distribution of the Generalized Shryaev–Roberts (GSR) detection statistic set up to “sense” the presence of the drift. Specifically, we derive a closed-form formula for the transition probability density function (pdf) of the time-homogeneous Markov diffusion process generated by the GSR statistic when the Brownian motion under surveillance is “drift-free”, i.e., in the pre-change regime; the GSR statistic’s (deterministic) nonnegative headstart is assumed arbitrarily given. The transition pdf formula is found analytically, through direct solution of the respective Kolmogorov forward equation via the Fourier spectral method to achieve separation of the spacial and temporal variables. The obtained result generalizes the well-known formula for the (pre-change) stationary distribution of the GSR statistic: the latter’s stationary distribution is the temporal limit of the distribution sought in this work. To conclude, we exploit the obtained formula numerically and briefly study the pre-change behavior of the GSR statistic versus three factors: (a) drift-shift magnitude, (b) time, and (c) the GSR statistic’s headstart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz M, Stegun I (eds) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, 10th edn., vol 55. United States National Bureau of Standards

  • Avram F, Leonenko N, Šuvak N (2012) On spectral analysis of heavy–tailed Kolmogorov–Pearson diffusions. Technical Reports Department of Mathematics. J.J. Strossmayer University of Osijek, Osijek, Croatia

    MATH  Google Scholar 

  • Basseville M, Nikiforov IV (1993) Detection of Abrupt Changes: Theory and Application. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Becker PA (2004) On the integration of products of Whittaker functions with respect to the second index. J Math Phys 45(2):761–773. doi:10.1063/1.1634351

    Article  MathSciNet  MATH  Google Scholar 

  • Beibel M (1996) A note on Ritov’s Bayes approach to the minimax property of the CUSUM procedure. Ann Stat 24(4):1804–1812. doi:10.1214/aos/1032298296

    Article  MathSciNet  MATH  Google Scholar 

  • Borodin AN, Salminen P (2002) Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Boston, MA, Birkhäuser

    Book  MATH  Google Scholar 

  • Buchholz H (1969) The Confluent Hypergeometric Function, Springer Tracts in Natural Philosophy, vol 15. Springer-Verlag, New York, NY. translated from German into English by H. Lichtblau and K. Wetzel

    Google Scholar 

  • Burnaev EV (2009) On a nonrandomized change-point detection method second-order optimal in the minimax Brownian motion problem. In: Proceedings of the X All-Russia Symposium on Applied and Industrial Mathematics (Fall open session), Sochi, Russia. (in Russian)

  • Burnaev EV, Feinberg EA, Shiryaev AN (2009) On asymptotic optimality of the second order in the minimax quickest detection problem of drift change for Brownian motion. Theory Probab Appl 53(3):519–536. doi:10.1137/S0040585X97983791

    Article  MathSciNet  MATH  Google Scholar 

  • Comtet A, Monthus C (1996) Diffusion in a one-dimensional random medium and hyperbolic Brownian motion. J Phys A: Math Gen 29(7):1331–1345. doi:10.1088/0305-4470/29/7/006

    Article  MathSciNet  MATH  Google Scholar 

  • Comtet A, Manthus C, Yor M (1998) Exponential functionals of Brownian motion and disordered systems. J Appl Probab 35(2):255–271

    Article  MathSciNet  MATH  Google Scholar 

  • Donati-Martin C, Ghomrasni R, Yor M (2001) On certain Markov processes attached to exponential functionals of Brownian motion: Application to Asian options. Rev Mat Iberoam 17(1):179–193. doi:10.4171/RMI/292

    Article  MathSciNet  MATH  Google Scholar 

  • Dufresne D (2001) The integral of geometric Brownian motion. Adv Appl Probab 33(1):223–241. doi:10.1239/aap/999187905

    Article  MathSciNet  MATH  Google Scholar 

  • Dunford N, Schwartz JT (1963) Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space. Wiley, New York, NY

    MATH  Google Scholar 

  • Fatone L, Mariani F, Recchioni MC, Zirilli F (2013) Some explicit formulae for the Hull and White stochastic volatility model. Int J Modern Nonlinear Theory Appl 2(1):14–33. doi:10.4236/ijmnta.2013.21003

    Article  MathSciNet  Google Scholar 

  • Feinberg EA, Shiryaev AN (2006) Quickest detection of drift change for Brownian motion in generalized Bayesian and minimax settings. Stat Decis 24(4):445–470. doi:10.1524/stnd.2006.24.4.445

    MathSciNet  MATH  Google Scholar 

  • Feller W (1952) The parabolic differential equations and the associated semi-groups of transformations. Ann Math 55(3):468–519. doi:10.2307/1969644

    Article  MathSciNet  MATH  Google Scholar 

  • Feynman RP (1948) Space-time approach to non-relativistic quantum mechanics. Rev Modern Phys 20(2):367–387. doi:10.1103/RevModPhys.20.367

    Article  MathSciNet  Google Scholar 

  • Fokker AD (1914) Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann Phys 348(5):810–820. doi:10.1002/andp.19143480507. (in German)

    Article  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2007) Table of integrals series, and products, 7th edn. Academic Press

  • Grosche C (1988) The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential. Ann Phys 187(1):110–134. doi:10.1016/0003-4916(88)90283-7

    Article  MathSciNet  MATH  Google Scholar 

  • Hartman P, Watson GS (1974) Normal distribution functions on spheres and the modified Bessel functions. Ann Probab 2(4):553–747. doi:10.1214/aop/1176996606

    Article  MathSciNet  MATH  Google Scholar 

  • Hostler L (1964) Coulomb Green’s functions and the Furry approximation. J Math Phys 5(5):591–611. doi:10.1063/1.1704153

    Article  MathSciNet  Google Scholar 

  • Hostler LC (1963) Coulomb Green’s functions. PhD thesis. Stanford University, Palo Alto, CA

    Google Scholar 

  • Hull J, White A (1987) The pricing of options on assets with stochastic volatilities. J Finan 42(2):281–300. doi:10.1111/j.1540-6261

    Article  MATH  Google Scholar 

  • Itô K, McKean HP Jr (1974) Diffusion Processes and Their Sample Paths. Springer, Berlin, Germany

    MATH  Google Scholar 

  • Kac M (1949) On distributions of certain Wiener functionals. Trans Am Math Soc 65(1):1–13. doi:10.2307/1990512

    Article  MathSciNet  MATH  Google Scholar 

  • Kac M (1951) On some connections between probability theory and differential and integral equations. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, University of California at Berkeley, Berkeley, CA, pp 189–215

  • Kac M (1959) Probability and Related Topics in Physical Sciences, Lectures in Applied Mathematics, vol 1A. American Mathematical Society, Providence, RI

    Google Scholar 

  • Karlin S, McGregor J (1960) Classical diffusion processes and total positivity. J Math Anal Appl 1(2):163–183. doi:10.1016/0022-247X(60)90020-2

    Article  MathSciNet  MATH  Google Scholar 

  • Kolmogoroff A (1931) Über die analitische Methoden in der Wahrscheinlichkeitsrechnung. Math Ann 104(1):415–458. doi:10.1007/BF01457949. (in German)

    Article  MathSciNet  MATH  Google Scholar 

  • Levitan BM (1950) Eigenfunction expansions of second-order differential equations. Gostechizdat Moscow–Leningrad, Leningrad, USSR. (in Russian)

    Google Scholar 

  • Levitan BM, Sargsjan IS (1975) Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators, Translations of Mathematical Monographs, vol 39. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  • Linetsky V (2004a) The spectral decomposition of the option value. Int J Theor Appl Finan 7(3):337–384. doi:10.1142/S0219024904002451

    Article  MathSciNet  MATH  Google Scholar 

  • Linetsky V (2004b) Spectral expansions for Asian (average price) options. Oper Res 52(6):856–867. doi:10.1287/opre.1040.0113

    Article  MathSciNet  MATH  Google Scholar 

  • Linetsky V (2006) Pricing equity derivatives subject to bankcruptcy. Math Finan 16(2):255–282. doi:10.1111/j.1467-9965.2006.00271.x

    Article  MathSciNet  MATH  Google Scholar 

  • Linetsky V (2007) Spectral methods in derivative pricing, Handbooks in Operations Research and Management Sciences, vol 15, North–Holland, Netherlands, chap 6, pp 223–299

  • Liptser RS, Shiryaev AN (2001) Statistics of Random Process I. No. 5 in Stochastic Modelling and Applied Probability. Springer

  • Lorden G (1971) Procedures for reacting to a change in distribution. Ann Math Stat 42(6):1897–1908. doi:10.1214/aoms/1177693055

    Article  MathSciNet  MATH  Google Scholar 

  • McKean HP, Jr (1956) Elementary solutions for certain parabolic partial differential equations. Trans Am Math Soc 82(2):519–548. doi:10.1090/S0002-9947-1956-0087012-3

    Article  MathSciNet  MATH  Google Scholar 

  • Milevsky MA (1997) The present value of a stochasic perpetuity and the Gamma distribution. Insur: Math Econ 20(3):243–250. doi:10.1016/S0167-6687(97)00013-9

    MathSciNet  MATH  Google Scholar 

  • Monthus C, Comtet A (1994) On the flux distribution in a one dimensional disordered system. J Phys I: Fr 4(5):635–653. doi:10.1051/jp1:1994167

    Google Scholar 

  • Morse PM (1929) Diatomic molecules according to the wave mechanics. II. vibrational levels. Phys Rev 34(1):57–64. doi:10.1103/PhysRev.34.57

    Article  MATH  Google Scholar 

  • Morse PM, Feshbach H (1953) Methods of Theoretical Physics, Part II. McGraw–Hill, New York, NY

    MATH  Google Scholar 

  • Moustakides GV (1986) Optimal stopping times for detecting changes in distributions. Ann Stat 14(4):1379–1387

    Article  MathSciNet  MATH  Google Scholar 

  • Moustakides GV (2004) Optimality of the CUSUM procedure in continuous time. Ann Stat 32(1):302–315. doi:10.1214/aos/1079120138

    Article  MathSciNet  MATH  Google Scholar 

  • Moustakides GV, Polunchenko AS, Tartakovsky AG (2011) A numerical approach to performance analysis of quickest change-point detection procedures. Stat Sin 21(2):571–596

    Article  MathSciNet  MATH  Google Scholar 

  • Page ES (1954) Continuous inspection schemes. Biometrika 41(1):100–115. doi:10.1093/biomet/41.1-2.100

    Article  MathSciNet  MATH  Google Scholar 

  • Pearson K (1895) Contributions to the mathematical theory of evolution—II. Skew variation in homogeneous material. Philos Trans Royal Soc London 186:343–414. doi:10.1098/rsta.1895.0010

    Article  Google Scholar 

  • Peskir G (2006) On the fundamental solution of the Kolmogorov–Shiryaev equation. In: Kabanov Y, Liptser R, Stoyanov J (eds) From Stochastic Calculus to Mathematical Finance: The The Shiryaev Festschrift. doi:10.1007/978-3-540-30788-4_26. Springer Berlin Heidelberg, pp 535–546

  • Planck M (1917) Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte Preuschen Akad Wiessenschaften 24:324–341. (in German)

    Google Scholar 

  • Pollak M (1985) Optimal detection of a change in distribution. Ann Stat 13 (1):206–227. doi:10.1214/aos/1176346587

    Article  MathSciNet  MATH  Google Scholar 

  • Pollak M, Siegmund D (1985) A diffusion process and its applications to detecting a change in the drift of Brownian motion. Biometrika 72(2):267–280. doi:10.1093/biomet/72.2.267

    Article  MathSciNet  MATH  Google Scholar 

  • Polunchenko AS, Sokolov G (2014) Toward optimal design of the Generalized Shiryaev–Roberts procedure for quickest change-point detection under exponential observations. In: Proceedings of the 2014 International Conference “Engineering & Telecommunications” (En&T’2014). Moscow Institute of Physics and Technology, Moscow, Russia

  • Polunchenko AS, Tartakovsky AG (2010) On optimality of the Shiryaev–Roberts procedure for detecting a change in distribution. Ann Stat 38(6):3445–3457. doi:10.1214/09-AOS775

    Article  MathSciNet  MATH  Google Scholar 

  • Polunchenko AS, Tartakovsky AG (2012) State-of-the-art in sequential change-point detection. Methodol Comput Appl Probab 14 (3):649–684. doi:10.1007/s11009-011-9256-5

    Article  MathSciNet  MATH  Google Scholar 

  • Polunchenko AS, Sokolov G, Du W (2013) Quickest change-point detection: A bird’s eye view, Québec, Canada

  • Poor HV, Hadjiliadis O (2009) Quickest Detection. Cambridge University Press, New York, NY

    MATH  Google Scholar 

  • Prudnikov AP, Brychkov YA, Marichev OI (1990) Integrals and Series, Vol. 3, More Special Functions. Gordon and Breach Science Publishers, New York, NY

    MATH  Google Scholar 

  • Ritov Y (1990) Decision theoretic optimality of the CUSUM procedure. Ann Stat 18(3):1464–1469

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts S (1966) A comparison of some control chart procedures. Technometrics 8(3):411–430

    Article  MathSciNet  Google Scholar 

  • De Schepper A, Goovaerts MJ (1999) The GARCH(1,1)-M model: Results for the densities of the variance and the mean. Insur: Math Econ 24(1&2):83–94. doi:10.1016/S0167-6687(98)00040-7

    MathSciNet  MATH  Google Scholar 

  • De Schepper A, Teunen M, Goovaerts MJ (1994) An analytical inversion of a Laplace transform related to annuities certain. Insur: Math Econ 14(1):33–37. doi:10.1016/0167-6687(94)00004-2

    MathSciNet  MATH  Google Scholar 

  • Schröder M (2003) On the integral of geometric Brownian motion. Adv Appl Probab 35(1):159–183. doi:10.1239/aap/1046366104

    Article  MathSciNet  MATH  Google Scholar 

  • Shiryaev AN (1961) The problem of the most rapid detection of a disturbance in a stationary process. Sov Math—Dokl 2:795–799. (Translated from Dokl. Akad. Nauk SSSR 138:1039–1042, 1961)

    MATH  Google Scholar 

  • Shiryaev AN (1963) On optimum methods in quickest detection problems. Theory Probab Appl 8(1):22–46. doi:10.1137/1108002

    Article  MATH  Google Scholar 

  • Shiryaev AN (1978) Optimal Stopping Rules. Springer-Verlag, New York, NY

    MATH  Google Scholar 

  • Shiryaev AN (1996) Minimax optimality of the method of cumulative sums (CUSUM) in the case of continuous time. Russ Math Surv 51(4):750–751. doi:10.1070/RM1996v051n04ABEH002986

    Article  MathSciNet  MATH  Google Scholar 

  • Shiryaev AN (1999) Essentials of Stochasic Finance: Facts, Models, Theory, Advanced Series on Statistical Science & Applied Probability, vol 3. World Scientific Publishing Co. Pte. Ltd., River Edge, NJ

    Book  Google Scholar 

  • Shiryaev AN (2002) Quickest detection problems in the technical analysis of the financial data. In: Geman H, Madan D, Pliska SR, Vorst T (eds) Mathematical Finance—Bachelier Congress. doi:10.1007/978-3-662-12429-1_22, vol 2000. Springer Finance, Springer Berlin Heidelberg, pp 487–521

  • Slater LJ (1960) Confluent Hypergeometric Functions. Cambridge University Press, Cambirdge, UK

    MATH  Google Scholar 

  • Szmytkowski R, Bielski S (2010) An orthogonality relation for the Whittaker functions of the second kind of imaginary order. Integr Trans Spec Funct 21(10):739–744. doi:10.1080/10652461003643412

    Article  MathSciNet  MATH  Google Scholar 

  • Tartakovsky A, Nikiforov I, Basseville M (2014) Sequential Analysis: Hypothesis Testing and Changepoint Detection, Monographs on Statistics and Applied Probability, vol 166. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  • Tartakovsky AG, Moustakides GV (2010) State-of-the-art in Bayesian changepoint detection. Seq Anal 29(2):125–145. doi:10.1080/07474941003740997

    Article  MathSciNet  MATH  Google Scholar 

  • Tartakovsky AG, Polunchenko AS (2010) Minimax optimality of the Shiryaev–Roberts procedure. In: Proceedings of the 5th International Workshop on Applied Probability. Universidad Carlos III of Madrid, Spain

  • Tartakovsky AG, Pollak M, Polunchenko AS (2012) Third-order asymptotic optimality of the Generalized Shiryaev–Roberts changepoint detection procedures. Theory Probab Appl 56(3):457–484. doi:10.1137/S0040585X97985534

    Article  MathSciNet  MATH  Google Scholar 

  • Titchmarsh EC (1962) Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon, Oxford, UK

    MATH  Google Scholar 

  • Vanneste M, Goovaerts MJ, Labie E (1994) The distribution of annuities. Insur: Math Econ 15(1):37–48. doi:10.1016/0003-4916(88)90283-7

    MathSciNet  MATH  Google Scholar 

  • Veeravalli VV, Banerjee T (2013) Quickest change detection. In: Chellappa R, Theodoridis S (eds) Academic Press Library in Signal Processing: Array and Statistical Signal Processing, vol 3. Academic Press, Oxford, UK, pp 209–256

  • Weyl H (1910) Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math Ann 68:220–269. (in German)

    Article  MathSciNet  MATH  Google Scholar 

  • Whittaker ET (1904) An expression of certain known functions as generalized hypergeometric functions. Bull Am Math Soc 10(3):125–134

    Article  MathSciNet  MATH  Google Scholar 

  • Wong E (1964) The construction of a class of stationary Markoff processes. In: Bellman R (ed) Stochastic Processes in Mathematical Physics and Engineering. American Mathematical Society, Providence, RI, pp 264–276

  • Yor M (1980) Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson. Z Wahrscheinlichkeitstheorie Verwandte Geb 53(1):71–95. doi:10.1007/BF00531612. (in French)

    Article  MathSciNet  MATH  Google Scholar 

  • Yor M (1992) On some exponential functionals of Brownian motion. Adv Appl Probab 24(3):509–531

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey S. Polunchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polunchenko, A.S., Sokolov, G. An Analytic Expression for the Distribution of the Generalized Shiryaev–Roberts Diffusion. Methodol Comput Appl Probab 18, 1153–1195 (2016). https://doi.org/10.1007/s11009-016-9478-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-016-9478-7

Keywords

Mathematics Subject Classification (2010)

Navigation