Skip to main content
Log in

Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

In this paper Markov models useful for following the time evolution of the aggregate claim amount and the claim number in the homogeneous time environment are presented. More precisely the homogeneous Markov reward processes in both discounted and not discounted cases are applied to solve the aggregate claim amount and the claim number processes respectively. In the last section the application of the proposed models is presented. Two different real-world databases are mixed for the construction of input data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen ES (1967) An algebraic treatment of fluctuations of sums of random variables. Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II. Univ. California Press, Berkeley, Calif

  • Asmussen S (1989) Risk theory in A markovian environment. Scand Actuar J 1989:69–100

  • Asmussen S, Albrecher H (2012) Ruin probabilities. Advanced Series on Statistical Science & Applied Probability, 2. World Scientific Publishing Co. Inc., River Edge, NJ

    Google Scholar 

  • Borkar VS, Meyn SP (2002) Risk-sensitive optimal control for Markov decision processes with monotone cost. Math Oper Res 27:192–209

    Article  MathSciNet  MATH  Google Scholar 

  • Cavazos-Cadena R, Hernández-Hernández D (2005). A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains. Ann Appl Probab 15:175–212

  • Ching W, Huang X, Ng MK, Siu T (2013) Markov chains: models, algorithms and applications, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Chung KL, AitSahlia F (2010) Elementary Probability Theory, 4th edn. Springer

  • Cramér H (1930) On the mathematical theory of risk. Skandia Jubilee Volume Stockholm

  • Cramér H (1955) Collective risk theory. Skandia Jubilee Volume Stockholm

  • de Finetti B (1940) Il Problema dei Pieni, Giornale dell’Istituto Italiano degli Attuari, vol 8

  • Embrechts P, Frey R, McNeil AJ (2005) Quantitative risk management: concepts, techniques, and tools, Princeton University Press, Princeton

  • Howard RA, Matheson JE (1972) Risk-sensitive Markov decision processes. Manag Sci 18:356–369

    Article  MathSciNet  MATH  Google Scholar 

  • Janssen J (1980) Some transient results on the M/SM/1 special semi-Markov model in risk and queuing theories. ASTIN Bulletin 11:41–51

    MathSciNet  Google Scholar 

  • Janssen J, Reinhard JM (1985) Probabilités de Ruine Pour une Classe de Modèles de Risque Semi-Markoviens. ASTIN Bulletin 15:123–133

    Article  Google Scholar 

  • Janssen J, Manca R (2006) Applied semi-Markov processes. Springer, New York

    MATH  Google Scholar 

  • Janssen J, Manca R (2007) Semi-Markov risk models for finance, insurance and reliability. Springer, New York

    MATH  Google Scholar 

  • Janssen J, Manca R, Volpe di Prignano E (2009) Mathematical finance: deterministic and stochastic models. Wiley, London

    Book  Google Scholar 

  • Janssen J, Reinhard JM (1985) Probabilités de Ruine Pour une Classe de Risques Semi-Markoviens. ASTIN Bulletin 15:123–133

    Article  Google Scholar 

  • Kemeny JG, Snell L, Knapp AW, Griffeath DS (1976) Denumerable Markov chains: with a chapter of Markov random fields by David Griffeath. Springer, New York

    Book  Google Scholar 

  • Lundberg P (1909) On the theory of reinsurance. In: History of actuarial science. Vol VII Habermann & S Sibbett, TA (eds) (1995) pp 291–344

  • Mikosch T (2009) Non-life insurance mathematics: an introduction with the poisson process. Springer, Berlin

    Book  Google Scholar 

  • Qureshi MA, Sanders HW (1994) Reward model solution methods with impulse and rate rewards: an algorithmic and numerical results. Perform Eval 20:413–436

  • Reinhard JM(1984) On a class of semi-Markov risk models obtained as classical risk models in a Markovian environment. ASTIN Bulletin 14:23–43

  • Riesz F (1913) Les Systèmes d’Équations Linéaires a une Infinité d’inconnues. Gauthier-Villar, Paris

    MATH  Google Scholar 

  • Rolski T, Schmidli H, Schmidt V, Teugels J (1999) Stochastic processes for insurance and finance. Wiley, London

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimondo Manca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Amico, G., Gismondi, F., Janssen, J. et al. Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes. Methodol Comput Appl Probab 17, 983–998 (2015). https://doi.org/10.1007/s11009-014-9416-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-014-9416-5

Keywords

Mathematics Subject Classification (2010)

Navigation