Skip to main content
Log in

Weighted Poisson Cells as Models for Random Convex Polytopes

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We introduce a parametric family for random convex polytopes in ℝd which allows for an easy generation of samples for further use, e.g., as random particles in materials modelling and simulation. The basic idea consists in weighting the Poisson cell, which is the typical cell of the stationary and isotropic Poisson hyperplane tessellation, by suitable geometric characteristics. Since this approach results in an exponential family, parameters can be efficiently estimated by maximum likelihood. This work has been motivated by the desire for a flexible model for random convex particles as can be found in many composite materials such as concrete or refractory castables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Baumstark V, Last G (2009) Gamma distributions for stationary Poisson flat processes. Adv Appl Prob (SGSA) 41:911–939

    Article  MATH  MathSciNet  Google Scholar 

  • Bickel PJ, Doksum KA (2007) Mathematical statistics: basic ideas and selected topics, 2nd edn, vol I. Prentice Hall

  • Calka P (2001) Mosaïques poissoniennes de l’espace euclidien. Une extension d’un résultat de R. E. Miles. CR Acad Sci I-Math 332:557–562

    MATH  MathSciNet  Google Scholar 

  • Calka P (2010) Tessellations. In: Kendall W, Molchanov I (eds) New perspectives in stochastic geometry. Oxford University Press

  • Coster M, Chermant JL (2002) On a way to material models for ceramics. J Europ Cer Soc 35:1191–1203

    Article  Google Scholar 

  • De Pellegrin DV, Stachowiak GW (2005) Simulation of three-dimensional abrasive particles. Wear 258:208–216

    Article  Google Scholar 

  • Fleischer F, Gloaguen C, Schmidt V, Voss F (2009) Simulation of the typical Poisson–Voronoi–Cox–Voronoi cell. J Stat Comput Simul 79(7):939–957

    Article  MATH  MathSciNet  Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Introducing Markov chain Monte Carlo. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain Monte Carlo in practice. Chapman & Hall, London

    Chapter  Google Scholar 

  • Hawkins AE (1993) The shape of powder-particle outlines. Research Studies Press, Taunton, Somerset, England and J. Wiley and Sons, New York, Chichester

    Google Scholar 

  • He H, Guo Z, Stroeven P, Stroeven M, Sluys LJ (2010) Strategy on simulation of arbitrary-shaped cement grains in concrete. Image Anal Stereol 29:79–84

    Article  Google Scholar 

  • Hilhorst HJ (2009) Heuristic theory for many-faced d-dimensional Poisson–Voronoi cells. J Stat Mech P08003:1–14

    Google Scholar 

  • Hilhorst HJ, Calka P (2008) Random line tessellations of the plane: statistical properties of many-sided cells. J Stat Phys 132:627–647

    Article  MATH  MathSciNet  Google Scholar 

  • Hug D, Schneider R (2007) Asymptotic shapes of large cells in random tessellations. Geom Funct Anal 17:156–191

    Article  MATH  MathSciNet  Google Scholar 

  • Lantuéjoul C (2002) Geostatistical simulation. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lautensack C, Zuyev S (2008) Random Laguerre tessellations. Adv Appl Prob (SGSA) 40:630–650

    Article  MATH  MathSciNet  Google Scholar 

  • Lee Y, Fang C, Tsou YR, Lu LS, Yang CT (2009) A packing algorithm for three-dimensional convex particles. Granular Matter 11:307–315

    Article  MATH  Google Scholar 

  • May JH, Smith RL (1982) Random polytopes: their definition, generation and aggregate properties. Math Program 24:39–54

    Article  MATH  MathSciNet  Google Scholar 

  • Miles RE (1971) Poisson flats in Euclidean spaces. Part II: homogeneous poisson flats and the complementary theorem. Adv Appl Prob 3:1–93

    Article  MATH  MathSciNet  Google Scholar 

  • Molchanov IS, Stoyan D (1996) Statistical models of random polyhedra. Commun Statist—Stoch Models 12(2):199–214

    Article  MATH  MathSciNet  Google Scholar 

  • Møller J, Zuyev S (1996) Gamma-type results and other related properties of poisson processes. Adv Appl Prob 28:662–673

    Article  Google Scholar 

  • Ohser J, Schladitz K (2009) 3D images of material structures. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Quenec’h JL, Chermant JL, Coster M, Jeulin D (1994) Liquid phase sintered materials modelling by random closed sets. In: Serra J, Soille P (eds) Mathematical morphology and its applications to image processing. Kluwer Academic Pub., Dordrecht, pp 225–232

    Chapter  Google Scholar 

  • Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Schneider R (1993) Convex bodies: the Brunn–Minkowski theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Schneider R, Weil W (2008) Stochastic and integral geometry. Springer, Berlin

    Book  MATH  Google Scholar 

  • Stoyan D, Stoyan H (1994) Fractals, random shapes and point fields. Wiley, Chichester

    MATH  Google Scholar 

  • Stoyan D, Davtyan A, Turetayev D (2002) Shape statistics for random domains and particles. In: Mecke K, Stoyan D (eds) Morphology of condensed matter. Physics and geometry of spatially complex systems. Lecture notes in physics. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Ballani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballani, F., van den Boogaart, K.G. Weighted Poisson Cells as Models for Random Convex Polytopes. Methodol Comput Appl Probab 16, 369–384 (2014). https://doi.org/10.1007/s11009-013-9342-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-013-9342-y

Keywords

AMS 2000 Subject Classifications

Navigation