Skip to main content
Log in

Completely positive dynamical semigroups and quantum resonance theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

A Correction to this article was published on 24 April 2019

This article has been updated

Abstract

Starting from a microscopic system–environment model, we construct a quantum dynamical semigroup for the reduced evolution of the open system. The difference between the true system dynamics and its approximation by the semigroup has the following two properties: It is (linearly) small in the system–environment coupling constant for all times, and it vanishes exponentially quickly in the large time limit. Our approach is based on the quantum dynamical resonance theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 April 2019

    Correction. The bound (2.23) in Theorem 2.1.

  • 24 April 2019

    Correction. The bound (2.23) in Theorem 2.1.

Notes

  1. We recall that a map on bounded operators on a Hilbert space, \(V:{\mathcal B}({\mathcal H})\rightarrow {\mathcal B}({\mathcal H})\), is called completely positive if \(V\otimes {\mathbf 1}:{\mathcal B}({\mathcal H}\otimes {\mathbb C}^n)\rightarrow {\mathcal B}({\mathcal H}\otimes {\mathbb C}^n)\) is positive (maps positive operators into positive ones) for all \(n\in \mathbb N\).

  2. If the initial state is of product form \(\omega _\mathrm{S}\otimes \omega _{\mathrm{R},\beta }\), then the term \( C |\lambda |\mathrm{e}^{-\theta _0 t}\) in (2.13) can be replaced by \( C \lambda ^2\mathrm{e}^{-\theta _0 t}\), see Theorem 3.1 of [20], Resonance theory of decoherence and thermalization.

  3. \(\Omega _{\mathrm{S},\beta }\) is cyclic, meaning that \(({\mathcal B}({\mathcal H}_\mathrm{S})\otimes {\mathbf 1}_\mathrm{S})\Omega _{\mathrm{S},\beta }={\mathcal H}_\mathrm{S}\otimes {\mathcal H}_\mathrm{S}\) and \(\Omega _{\mathrm{S},\beta }\) is separating, meaning that if \((X\otimes {\mathbf 1}_\mathrm{S})\Omega _{\mathrm{S},\beta }=0\) then \(X=0\). Due to the cyclic and separating property, (2.14) defines the map \(\delta ^t_\lambda \) uniquely, and it shows that \(t\mapsto \delta ^t_\lambda \) is a group.

  4. One may also follow an extended Mourre theory approach, recently developed in [15]. This method is more powerful in that it requires less restrictive assumptions, but it is technically somewhat more demanding.

  5. Use the estimate \(|\mathrm{e}^{-\lambda ^2 t\mathrm{Im }a_{e,j}} - \mathrm{e}^{-\lambda ^2 t\mathrm{Im }\widetilde{\lambda }_{e,j}}| = \mathrm{e}^{-\lambda ^2 t\mathrm{Im }a_{e,j}}|1-\mathrm{e}^{\lambda ^2 t\mathrm{Im }(a_{e,j}-\widetilde{\lambda }_{\widetilde{e},j})}| \leqslant \mathrm{const.} |\lambda |^3 t \mathrm{e}^{-\lambda ^2(1+O(\lambda ))\gamma t}\).

References

  1. Alicki, R., Lendi, K.: Quantum dynamical semigroups and applications, Lecture notes on physics, vol. 717. Springer Verlag, New York (2007)

    MATH  Google Scholar 

  2. Araki, H., Woods, E.J.: Representation of the canonical commutation relations describing a nonrelativistic infinite free bose gas. J. Math. Phys. 4, 637–662 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  3. Benatti, F., Floreanini, R.: Open quantum dynamics: complete positivity and entanglement. Int. J. Mod. Phys. B 19, 3063 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bach, V., Fröhlich, J., Sigal, I.M.: Return to equilibrium. J. Math. Phys. 41(6), 3985–4060 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Breuer, H.-P., Petruccione, F.: The theory of open quantum systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  6. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, vol. 1 and 2. Springer Verlag, New York (1979)

    Book  MATH  Google Scholar 

  7. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Davies, E.B.: Markovian master equations, II. Math. Annalen 219, 147–158 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Derezinski, J., Jaksic, V., Pillet, C.-A.: Perturbation theory of \(W^*\)-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15(5), 447–489 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dümke, R., Spohn, H.: The proper form of the generator in the weak coupling limit. Z. Phys. B 34, 419–422 (1979)

    Article  ADS  Google Scholar 

  11. Fröhlich, J., Merkli, M.: Another return of “return to equilibrium”. Commun. Math. Phys. 251(2), 235–262 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Gardiner, C.W., Zoller, P.: Quantum noise. Springer series in synergetics, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  13. Jaksic, V., Pillet, C.-A.: From resonances to master equations. Ann. Inst. H. Poincaré Phys. Théor. 67(4), 425–445 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Jaksic, V., Pillet, C.-A.: On a model for quantum friction. II. Fermi’s golden rule and dynamics at positive temperature. Commun. Math. Phys. 176(3), 619–644 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Könenberg, M., Merkli, M.: On the irreversible dynamics emerging from quantum resonances. J. Math. Phys. 57, 033302 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Merkli, M.: Entanglement evolution via quantum resonances. J. Math. Phys. 52(9), 092201 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Merkli, M., Berman, G.P., Sayre, R.: Electron transfer reactions: generalized Spin–Boson approach. J. Math. Chem. 51(3), 890–913 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Merkli, M., Berman, G.P., Song, H.: Multiscale dynamics of open three-level quantum systems with two quasi-degenerate levels. J. Phys. A Math. Theor. 48, 275304 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Merkli, M., Berman, G.P., Sayre, R.T., Gnanakaran, S., Könenberg, M., Nesterov, A.I., Song, H.: Dynamics of a chlorophyll dimer in collective and local thermal environments. J. Math. Chem. 54(4), 866–917 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Merkli, M., Sigal, I.M., Berman, G.P.: Resonance theory of decoherence and thermalization. Ann. Phys. 323, 373–412 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Merkli, M., Sigal, I.M., Berman, G.P.: Decoherence and thermalization. Phys. Rev. Lett. 98(13), 130401–130405 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Merkli, M., Sigal, I.M., Berman, G.P.: Dynamics of collective decoherence and thermalization. Ann. Phys. 323(12), 3091–3112 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Mukamel, S.: Principles of nonlinear spectroscopy. Oxford series in optical and imaging sciences. Oxford University Press, Oxford (1995)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by an NSERC Discovery Grant and an NSERC Discovery Grant Accelerator. We thank an anonymous referee for useful comments and for inciting us to explain the derivation of (2.11), resulting in Sect. 2.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Könenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Könenberg, M., Merkli, M. Completely positive dynamical semigroups and quantum resonance theory. Lett Math Phys 107, 1215–1233 (2017). https://doi.org/10.1007/s11005-017-0937-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0937-z

Keywords

Mathematics Subject Classification

Navigation