Skip to main content
Log in

Constructing Hadamard States via an Extended Møller Operator

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider real scalar field theories, whose dynamics is ruled by normally hyperbolic operators differing only by a smooth potential V. By means of an extension of the standard definition of Møller operator, we construct an isomorphism between the associated spaces of smooth solutions and between the associated algebras of observables. On the one hand, such isomorphism is non-canonical, since it depends on the choice of a smooth time-dependant cut-off function \({\chi}\). On the other hand, given any quasi-free Hadamard state for a theory with a given V, such isomorphism allows for the construction of another quasi-free Hadamard state for a different potential. The resulting state preserves also the invariance under the action of any isometry, whose associated Killing field \({\xi}\) is complete and fulfilling both \({\mathcal{L}_\xi V=0 \,\, {\rm and} \,\, \mathcal{L}_\xi\chi=0}\). Eventually, we discuss a sufficient condition to remove on static spacetimes, the dependence on the cutoff via a suitable adiabatic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avetisyan Z.G.: A unified mode decomposition method for physical fields in homogeneous cosmology. Rev. Math. Phys. 26, 1430001 (2014) arXiv:1212.2408 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  2. Bär C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Commun. Math. Phys. 333, 1585 (2015) arXiv:1310.0738 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, 1st edn. Eur. Math. Soc., Zürich (2007)

  4. Benini. M., Dappiaggi, C.: Models of free quantum field theories on curved backgrounds. arXiv:1505.04298 [math-ph]

  5. Benini M., Dappiaggi C., Hack T.P.: Quantum Field Theory on Curved Backgrounds—A Primer. Int. J. Mod. Phys. A 28, 1330023 (2013) arXiv:1306.0527 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Benini, M., Dappiaggi, C., Murro, S.: Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states. J. Math. Phys. 55, 082301 (2014). arXiv:1404.4551 [gr-qc]

  7. Bernal, A.N., Sánchez, M.S.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43 (2005). arXiv:gr-qc/0401112

  8. Brunetti, R., Fredenhagen, K., Rejzner, K.: Quantum gravity from the point of view of locally covariant quantum field theory. arXiv:1306.1058 [math-ph]

  9. Chilian B., Fredenhagen K.: The time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513 (2009) arXiv:0802.1642 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dappiaggi C., Hack T.P., Pinamonti N.: Approximate KMS states for scalar and spinor fields in Friedmann–Robertson–Walker spacetimes. Ann. Henri Poincaré 12, 1449 (2011) arXiv:1009.5179 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dappiaggi, C., Moretti, V., Pinamonti, N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349 (2006). arXiv:gr-qc/0506069

  12. Dappiaggi C., Moretti V., Pinamonti N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285, 1129 (2009) arXiv:0712.1770 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dappiaggi C., Moretti V., Pinamonti N.: Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009) arXiv:0812.4033 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Drago, N., Hack, T.P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. arXiv:1502.02705 [math-ph]

  15. Finster, F., Murro, S., Röken, C.: The fermionic projector in a time-dependent external potential: mass oscillation property and hadamard states. arXiv:1501.05522 [math-ph]

  16. Fredenhagen K., Lindner F.: Construction of KMS states in perturbative qft and renormalized hamiltonian dynamics. Commun. Math. Phys. 332(3), 895 (2014) arXiv:1306.6519 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Fredenhagen, K., Rejzner, K.: QFT on curved spacetimes: axiomatic framework and examples. arXiv:1412.5125 [math-ph]

  18. Fulling, S.A.: Aspects of quantum field theory in curved space-time. London Math. Soc. Student Texts 17, 1 (1989)

  19. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. 136, 243 (1981)

  20. Geroch, R.P.: The domain of dependence. J. Math. Phys. 11, 437 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gérard, C., Wrochna, M.: Feynman propagators and Hadamard states from scattering data for the Klein–Gordon equation on asymptotically Minkowski spacetimes. arXiv:1603.07465 [math-ph]

  22. Gérard, C., Wrochna, M.: Hadamard states for the linearized Yang–Mills equation on curved spacetime. Commun. Math. Phys. 337(1), 253 (2015). arXiv:1403.7153 [math-ph]

  23. Gérard, C., Wrochna, M.: Construction of Hadamard states by characteristic Cauchy problem. arXiv:1409.6691 [math-ph]

  24. Gérard C., Wrochna M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325, 713 (2014) arXiv:1209.2604 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Khavkine, I., Moretti, V.: Algebraic QFT in curved spacetime and quasifree Hadamard states: an introduction. arXiv:1412.5945 [math-ph]

  26. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Interscience Publisher, New York (1963)

  27. Olbermann H.: States of low energy on Robertson–Walker spacetimes. Class. Quant. Grav. 24, 5011 (2007) arXiv:0704.2986 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Radzikowski M.J.: A Local to global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys.180, 1 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Sahlmann H., Verch R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705 (2000) arXiv:math-ph/0002021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203 (2001)

  32. Sanders K.: On the construction of Hartle–Hawking–Israel states across a static bifurcate Killing horizon. Lett. Math. Phys. 105(4), 575 (2015) arXiv:1310.5537 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Sanders, K.: A note on spacelike and timelike compactness. Class. Quant. Grav. 30, 115014 (2013). arXiv:1211.2469 [math-ph]

  34. Sanders, K.: Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime. Commun. Math. Phys. 295, 485 (2010). arXiv:0903.1021 [math-ph]

  35. Them, K., Brum, M.: States of low energy on homogeneous and inhomogeneous, expanding spacetimes. Class. Quant. Grav. 30, 235035 (2013). arXiv:1302.3174 [gr-qc]

  36. Vasy, A., Wrochna, M.: Quantum fields from global propagators on asymptotically Minkowski and extended de Sitter spacetimes. arXiv:1512.08052 [math-ph]

  37. Wrochna, M., Zahn, J.: Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime. arXiv:1407.8079 [math-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Dappiaggi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dappiaggi, C., Drago, N. Constructing Hadamard States via an Extended Møller Operator. Lett Math Phys 106, 1587–1615 (2016). https://doi.org/10.1007/s11005-016-0884-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0884-0

Mathematics Subject Classification

Keywords

Navigation