Skip to main content
Log in

Trigonometric and Elliptic Ruijsenaars–Schneider Systems on the Complex Projective Space

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a direct construction of compact real forms of the trigonometric and elliptic \({n}\)-particle Ruijsenaars–Schneider systems whose completed center-of-mass phase space is the complex projective space \({{\mathbb{CP}}^{n-1}}\) with the Fubini–Study symplectic structure. These systems are labeled by an integer \({p\in\{1,\ldots,n-1\}}\) relative prime to \({n}\) and a coupling parameter \({y}\) varying in a certain punctured interval around \({p\pi/n}\). Our work extends Ruijsenaars’s pioneering study of compactifications that imposed the restriction \({0 < y < \pi/n}\), and also builds on an earlier derivation of more general compact trigonometric systems by Hamiltonian reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48, 445–495 (1998). arXiv:dg-ga/9707021

  2. Blondeau-Fournier, O., Desrosiers, P., Mathieu, P.: The supersymmetric Ruijsenaars–Schneider model. Phys. Rev. Lett. 114, 121602 (2015). arXiv:1403.4667 [hep-th]

  3. Bogomolny, E., Giraud, O., Schmit, C.: Random matrix ensembles associated with Lax matrices. Phys. Rev. Lett. 103, 054103 (2009). arXiv:0904.4898 [nlin.CD]

  4. Etingof, P.: Calogero–Moser Systems and Representation Theory. European Mathematical Society, Zurich (2007)

  5. Fehér, L., Ayadi, V.: Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction. J. Math. Phys. 51, 103511 (2010). arXiv:1005.4531 [math-ph]

  6. Fehér, L., Klimčík, C.: Self-duality of the compactified Ruijsenaars–Schneider system from quasi-Hamiltonian reduction. Nucl. Phys. B 860, 464–515 (2012). arXiv:1101.1759 [math-ph]

  7. Fehér, L., Klimčík, C.: On the spectra of the quantized action-variables of the compactified Ruijsenaars–Schneider system. Theor. Math. Phys. 171, 704–714 (2012). arXiv:1203.2864 [math-ph]

  8. Fehér, L., Kluck, T.J.: New compact forms of the trigonometric Ruijsenaars–Schneider system. Nucl. Phys. B 882, 97–127 (2014). arXiv:1312.0400 [math-ph]

  9. Gorsky, A., Nekrasov, N.: Relativistic Calogero–Moser model as gauged WZW theory. Nucl. Phys. B 436, 582–608 (1995). arXiv:hep-th/9401017

  10. Nekrasov, N.: Infinite-dimensional algebras, many-body systems and gauge theories. In: Morozov, A.Yu., Olshanetsky, M.A. (eds.) Moscow Seminar in Mathematical Physics. AMS Transl. Ser. 2, pp. 263–299. American Mathematical Society, Providence (1999)

  11. Olshanetsky M.A., Perelomov A.M.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep. 71, 313–400 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  12. Pusztai, B.G., Görbe, T.F.: Lax representation of the hyperbolic van Diejen dynamics with two coupling parameters (preprint) (2016). arXiv:1603.06710 [math-ph]

  13. Ruijsenaars S.N.M., Schneider H.: A new class of integrable systems and its relation to solitons. Ann. Phys. 170, 370–405 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Ruijsenaars S.N.M.: Complete integrability of relativistic Calogero–Moser systems and elliptic function identities. Commun. Math. Phys. 110, 191–213 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In: Kupershmidt, B. (ed.) Integrable and Superintegrable Systems, pp. 165–206. World Scientific, Singapore (1990)

  16. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems. III. Sutherland type systems and their duals. Publ. RIMS Kyoto Univ. 31, 247–353 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ruijsenaars, S.N.M.: Systems of Calogero–Moser type. In: Semenoff, G.W., Vinet, L. (eds.) Proceedings of the 1994 CRM-Banff Summer School ‘Particles and Fields’, pp. 251–352. Springer (1999)

  18. van Diejen, J.F.: Deformations of Calogero–Moser systems. Theor. Math. Phys. 99, 549–554 (1994). arXiv:solv-int/9310001

  19. van Diejen, J.F., Vinet, L.: The quantum dynamics of the compactified trigonometric Ruijsenaars–Schneider model. Commun. Math. Phys. 197, 33–74 (1998). arXiv:math/9709221 [math-ph]

  20. van Diejen, J.F., Vinet, L. (eds.): Calogero–Moser–Sutherland Models. Springer, New York (2000)

  21. van Diejen, J.F., Emsiz, E.: Orthogonality of Macdonald polynomials with unitary parameters. Math. Z. 276, 517–542 (2014). arXiv:1301.1276 [math.RT]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Görbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fehér, L., Görbe, T.F. Trigonometric and Elliptic Ruijsenaars–Schneider Systems on the Complex Projective Space. Lett Math Phys 106, 1429–1449 (2016). https://doi.org/10.1007/s11005-016-0877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0877-z

Mathematics Subject Classification

Keywords

Navigation