Skip to main content
Log in

Traveling Waves for the Mass in Mass Model of Granular Chains

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the present work, we consider the mass in mass (or mass with mass) system of granular chains, namely, a granular chain involving additionally an internal (or, respectively, external) resonator. For these chains, we rigorously establish that under suitable “anti-resonance” conditions connecting the mass of the resonator and the speed of the wave, bell-shaped traveling-wave solutions continue to exist in the system, in a way reminiscent of the results proven for the standard granular chain of elastic Hertzian contacts. We also numerically touch upon settings, where the conditions do not hold, illustrating, in line also with recent experimental work, that non-monotonic waves bearing non-vanishing tails may exist in the latter case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahnert K., Pikovsky A.: Compactons and chaos in strongly nonlinear lattices. Phys. Rev. E. 79, 026209 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Boechler N., Theocharis G., Daraio C.: Bifurcation-based acoustic switching and rectification. Nat. Mat. 10, 665–668 (2011)

    Article  Google Scholar 

  3. Bonanomi, L., Theocharis, G., Daraio, C.: Locally resonant granular chain. Phys. Rev. E 91, 033208 (2015)

  4. Brascamp H.J., Lieb E.H., Luttinger J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campbell, D.K., Rosenau, P., Zaslavsky, G.M.: Introduction: The Fermi–Pasta–Ulam problem—The first fifty years. Chaos 15, 015101 (2005)

  6. Chatterjee A.: Asymptotic solution for solitary waves in a chain of elastic sphereres. Phys. Rev. E 59, 5912–5919 (1998)

    Article  ADS  Google Scholar 

  7. Daraio C., Nesterenko V.F., Herbold E.B., Jin S.: Strongly nonlinear waves in a chain of Teflon beads. Phys. Rev. E. 72, 016603 (2005)

    Article  ADS  Google Scholar 

  8. English J.M., Pego R.L.: On the solitary wave pulse in a chain of beads. Proc. AMS. 133, 1763–1768 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fermi, E., Pasta, J., Ulam, S.: Studies of Nonlinear Problems, LA-UR (1940)

  10. Friesecke G., Wattis J.A.D.: Existence theorem for solitary waves on lattices. Comm. Math. Phys. 161, 391–418 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Galavotti, G. (ed.): The FermiG(PastaG(Ulam Problem: A Status Report)). Springer-Verlag, New York (2008)

  12. Gantzounis G., Serra-Garcia M., Homma K., Mendoza J.M., Daraio C.: Granular metamaterials for vibration mitigation. J. Appl. Phys. 114, 093514 (2013)

    Article  ADS  Google Scholar 

  13. Hochstrasser D., Mertens F.G., Büttner H.: An iterative method for the calculation of narrow solitary excitations on atomic chains. Phys. D. 35, 259–266 (1989)

    Article  Google Scholar 

  14. James G.: Nonlinear waves in Newton’s cradle and the discrete p- Schrödinger equation. Math. Mod. Meth. Appl. A. sci. 21, 2335–2377 (2011)

    Article  MATH  Google Scholar 

  15. James G., Kevrekidis P.G., Cuevas J.: Breathers in oscillator chains with Hertzian interactions.. Phys. D. 251, 39–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kevrekidis, P.G.: Non-linear waves in lattices: past, present, future. IMA J. Appl. Math. 76(3), 389–423 (2011)

  17. Kevrekidis P.G., Vainchtein A., Serra Garcia M., Daraio C.: Interaction of traveling waves with mass-with-mass defects within a Hertzian chain. Phys. Rev. E. 87, 042911 (2013)

    Article  ADS  Google Scholar 

  18. Khatri, D., Daraio, C., Rizzo, P: Highly nonlinear waves’ sensor technology for highway infrastructures. Proc. SPIE 6934:69340U (2008)

  19. Kim, E., Li, F., Chong, C., Theocharis, G., Yang, J., Kevrekidis, P.G.: Highly nonlinear wave propagation in elastic woodpile periodic structures. Phys. Rev. Lett. 114, 118002 (2015)

  20. Kim E., Yang J: Wave propagation in single column woodpile phononic crystals: formation of tunable band gaps. J. Mech. Phys. Solids 71, 33–45 (2014)

    Article  ADS  MATH  Google Scholar 

  21. Li F., Anzel P., Yang J., Kevrekidis P.G., Daraio C.: Granular acoustic transistors and logic gates. Nat. Commun. 5, 5311 (2014)

    Article  ADS  Google Scholar 

  22. Li X.-F., Ni X., Feng L., Lu M.-H., He C., Chen Y.-F.: Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011)

    Article  ADS  Google Scholar 

  23. Liang B., Yuan B., Cheng J.C.: Acoustic diode: rectification of acoustic energy flux in one-dimensional systems. Phys. Rev. Lett. 103, 104301 (2009)

    Article  ADS  Google Scholar 

  24. Lieb, E., Loss, M.: Analysis, Second edition. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, RI (2001)

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and Part II. Ann. Inst. Henri Poincaré Sect. A. (N.S.) 1, 109–145, 223–283 (1984)

  26. MacKay R.S.: Solitary waves in a chain of beads under Hertz contact. Phys. Lett. A 251, 191–192 (1999)

    Article  ADS  Google Scholar 

  27. Nesterenko V.F.: Dynamics of heterogeneous materials. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  28. Nesterenko V.F., Daraio C., Herbold E.B., Jin S.: Anomalous wave reflection at the interface of two strongly nonlinear granular media. Phys. Rev. Lett. 95, 158702 (2005)

    Article  ADS  Google Scholar 

  29. Nesterenko V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24, 733–743 (1983)

    Article  ADS  Google Scholar 

  30. Sen S., Hong J., Bang J., Avalos E., Doney R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. Spadoni A., Daraio C.: Generation and control of sound bullets with a nonlinear acoustic lens. PNAS. 107, 7230–7234 (2010)

    Article  ADS  Google Scholar 

  32. Stefanov A., Kevrekidis P.: On the existence of solitary traveling waves for generalized Hertzian chains. J. Nonlinear Sci. 22, 327–349 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Stefanov A., Kevrekidis P.G.: Traveling waves for monomer chains with pre-compression. Nonlinearity. 26, 539–564 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Theocharis, G., Boechler, N., Daraio, C.: Nonlinear Phononic Periodic Structures and Granular Crystals. In: Phononic crystals and metamaterials, Ch. 6, Springer Verlag, New York (2013)

  35. Xu, H., Kevrekidis, P.G., Stefanov, A.: Traveling waves and their tails in locally resonant granular system. J. Phys. A. 48(19), 195204 (2015)

  36. Yang J., Malomed B.A., Kaup D.J.: Embedded solitons in second-harmonic-generating systems. Phys. Rev. Lett. 83, 1958–1961 (1999)

    Article  ADS  Google Scholar 

  37. Yagasaki K., Champneys A.R., Malomed B.A.: Discrete embedded solitons. Nonlinearity. 18, 2591–2613 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas G. Stefanov.

Additional information

Stefanov’s research is supported in part by NSF-DMS 1313107. Kevrekidis acknowledges support from the National Science Foundation under grant DMS-1312856, from ERC and FP7-People under grant 605096, and from the ARO (under grant W911NF-15-1-0604). P.G.K.’s work at Los Alamos is supported in part by the U.S. Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kevrekidis, P.G., Stefanov, A.G. & Xu, H. Traveling Waves for the Mass in Mass Model of Granular Chains. Lett Math Phys 106, 1067–1088 (2016). https://doi.org/10.1007/s11005-016-0854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0854-6

Mathematics Subject Classification

Keywords

Navigation