Skip to main content
Log in

On the Defect Group of a 6D SCFT

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We use the F-theory realization of 6D superconformal field theories (SCFTs) to study the corresponding spectrum of stringlike, i.e., surface defects. On the tensor branch, all of the stringlike excitations pick up a finite tension, and there is a corresponding lattice of string charges, as well as a dual lattice of charges for the surface defects. The defect group is data intrinsic to the SCFT and measures the surface defect charges which are not screened by dynamical strings. When non-trivial, it indicates that the associated theory has a partition vector rather than a partition function. We compute the defect group for all known 6D SCFTs, and find that it is just the abelianization of the discrete subgroup of U(2) which appears in the classification of 6D SCFTs realized in F-theory. We also explain how the defect group specifies defining data in the compactification of a (1, 0) SCFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vafa C., Witten E.: A strong coupling test of S-duality. Nucl. Phys. B 431, 3–77 (1994) arXiv:hep-th/9408074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ganor O.J.: Six-dimensional tensionless strings in the large N limit. Nucl. Phys. B 489, 95–121 (1997) arXiv:hep-th/9605201

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Kapustin A.: Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality. Phys.Rev. D 74, 025005 (2006) arXiv:hep-th/0501015

    Article  ADS  MathSciNet  Google Scholar 

  4. Gaiotto D., Moore G.W., Neitzke A.: Framed BPS states. Adv. Theor. Math. Phys. 17, 241–397 (2013) arXiv:1006.0146 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  5. Aharony O., Seiberg N., Tachikawa Y.: Reading between the lines of four-dimensional gauge theories. JHEP 1308, 115 (2013) arXiv:1305.0318

    Article  ADS  MathSciNet  Google Scholar 

  6. Gaiotto D., Kapustin A., Seiberg N., Willett B.: Generalized global symmetries. JHEP 1502, 172 (2015) arXiv:1412.5148 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  7. Witten E.: Solutions of four-dimensional field theories via M theory. Nucl. Phys. B 500, 3–42 (1997) arXiv:hep-th/9703166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gaiotto D.: N = 2 dualities. JHEP 1208, 034 (2012) arXiv:0904.2715 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  9. Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010) arXiv:0906.3219 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gaiotto, D., Moore, G.W., Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. arXiv:0907.3987 [hep-th]

  11. Witten, E.: Geometric Langlands from six dimensions. arXiv:0905.2720 [hep-th]

  12. Drukker, N., Morrison, D.R., Okuda, T.: Loop operators and S-duality from curves on Riemann surfaces. JHEP 0909, 031 (2009). arXiv:0907.2593 [hep-th]

  13. Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in \({\mathcal{N} = 2}\) gauge theory and Liouville modular geometry. JHEP 1001, 113 (2010). arXiv:0909.0945 [hep-th]

  14. Tachikawa, Y.: On the 6D origin of discrete additional data of 4D gauge theories. JHEP 1405, 020 (2014). arXiv:1309.0697 [hep-th]

  15. Xie, D.: Aspects of line operators of class \({\mathcal{S}}\) theories. arXiv:1312.3371 [hep-th]

  16. Seiberg, N., Taylor, W.: Charge lattices and consistency of 6D supergravity. JHEP 1106, 001 (2011). arXiv:1103.0019 [hep-th]

  17. Heckman, J.J., Morrison, D.R., Vafa, C.: On the classification of 6D SCFTs and generalized ADE orbifolds. JHEP 1405, 028 (2014). arXiv:1312.5746 [hep-th]

  18. Gaiotto, D., Tomasiello, A.: Holography for (1, 0) theories in six dimensions. JHEP 1412, 003 (2014). arXiv:1404.0711 [hep-th]

  19. Del Zotto, M; Heckman, J.J., Tomasiello, A., Vafa, C.: 6D conformal matter. JHEP 1502, 054 (2015). arXiv:1407.6359 [hep-th]

  20. Heckman, J.J.: More on the matter of 6D SCFTs. arXiv:1408.0006 [hep-th]

  21. Del Zotto, M., Heckman, J.J., Morrison, D.R., Park, D.S.: 6D SCFTs and gravity. arXiv:1412.6526 [hep-th]

  22. Heckman, J.J., Morrison, D.R., Rudelius, T., Vafa, C.: Atomic classification of 6D SCFTs. arXiv:1502.05405 [hep-th]

  23. Bhardwaj, L.: Classification of 6D \({\mathcal{N} = (1,0)}\) gauge theories. arXiv:1502.06594 [hep-th]

  24. Witten E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85–126 (1995) arXiv:hep-th/9503124

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Witten, E.: Some comments on string dynamics. arXiv:hep-th/9507121

  26. Strominger A.: Open P-branes. Phys. Lett. B 383, 44–47 (1996) arXiv:hep-th/9512059

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Witten E.: Small instantons in string theory. Nucl. Phys. B 460, 541–559 (1996) arXiv:hep-th/9511030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ganor O.J., Hanany A.: Small E 8 instantons and tensionless non critical strings. Nucl. Phys. B 474, 122–140 (1996) arXiv:hep-th/9602120

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Morrison D.R., Vafa C.: Compactifications of F-theory on Calabi–Yau threefolds—II. Nucl. Phys. B 476, 437–469 (1996) arXiv:hep-th/9603161

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Seiberg N., Witten E.: Comments on string dynamics in six dimensions. Nucl. Phys. B 471, 121–134 (1996) arXiv:hep-th/9603003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Seiberg N.: Non-trivial fixed points of the renormalization group in six dimensions. Phys. Lett. B 390, 169–171 (1997) arXiv:hep-th/9609161

    Article  ADS  MathSciNet  Google Scholar 

  32. Bershadsky, M.; Johansen, A.: Colliding singularities in F-theory and phase transitions. Nucl. Phys. B 489, 122–138 (1997). arXiv:hep-th/9610111

  33. Brunner I., Karch A.: Branes at orbifolds versus Hanany Witten in six-dimensions. JHEP 9803, 003 (1998) arXiv:hep-th/9712143

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Blum J.D., Intriligator K.A.: Consistency conditions for branes at orbifold singularities. Nucl. Phys. B 506, 223–235 (1997) arXiv:hep-th/9705030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Aspinwall P.S., Morrison D.R.: Point-like instantons on K3 orbifolds. Nucl. Phys. B 503, 533–564 (1997) arXiv:hep-th/9705104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Intriligator K.A.: New string theories in six-dimensions via branes at orbifold singularities. Adv. Theor. Math. Phys. 1, 271–282 (1998) arXiv:hep-th/9708117

    Article  MathSciNet  MATH  Google Scholar 

  37. Hanany A., Zaffaroni A.: Branes and six-dimensional supersymmetric theories. Nucl. Phys. B 529, 180–206 (1998) arXiv:hep-th/9712145

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Witten E.: Five-brane effective action in M theory. J. Geom. Phys. 22, 103–133 (1997) arXiv:hep-th/9610234

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Aharony O., Witten E.: Anti-de Sitter space and the center of the gauge group. JHEP 9811, 018 (1998) arXiv:hep-th/9807205

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Witten E.: AdS/CFT correspondence and topological field theory. JHEP 9812, 012 (1998) arXiv:hep-th/9812012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Moore G.W.: Anomalies, Gauss laws, and Page charges in M-theory. Comptes Rendus Phys. 6, 251–259 (2005) arXiv:hep-th/0409158

    Article  ADS  MathSciNet  Google Scholar 

  42. Belov, D., Moore, G.W.: Holographic action for the self-dual field. arXiv:hep-th/0605038

  43. Freed D.S., Moore G.W., Segal G.: Heisenberg groups and noncommutative fluxes. Ann. Phys. 322, 236–285 (2007) arXiv:hep-th/0605200

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Witten, E.: Conformal field theory in four and six dimensions. arXiv:0712.0157 [math.RT]

  45. Henningson, M.: The partition bundle of type A N−1 (2, 0) theory. JHEP 1104, 090 (2011). arXiv:1012.4299 [hep-th]

  46. Freed, D.S., Teleman, C.: Relative quantum field theory. Commun. Math. Phys. 326, 459–476 (2014). arXiv:1212.1692 [hep-th]

  47. ’t Hooft G.: On the phase transition towards permanent quark confinement. Nucl. Phys. B 138, 1 (1978)

    MathSciNet  Google Scholar 

  48. ’t Hooft G.: A property of electric and magnetic flux in nonabelian gauge theories. Nucl. Phys. B 153, 141 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  49. Henningson, M.: Automorphic properties of (2, 0) theory on \({T^6}\). JHEP 1001, 090 (2010). arXiv:0911.5643 [hep-th]

  50. Bump, D.: Lie Groups, 2nd edn. Springer, New York (2013)

  51. DiFrancesco, P., Mathieu, P., Senechal, D.: Conformal Field Theory. Springer, New York (1997)

  52. Deser S., Gomberoff A., Henneaux M., Teitelboim C.: P-brane dyons and electric magnetic duality. Nucl. Phys. B 520, 179–204 (1998) arXiv:hep-th/9712189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Prasad, A., Vemuri, M.K.: Inductive algebras for finite Heisenberg groups. Commun. Algebra 38(2), 509–514 (2010). doi:10.1080/00927870902828520

  54. Mumford, D.: Tata lectures on theta. III. In: Progress in Mathematics, vol. 97. Birkhäuser Boston, Inc., Boston (1991). doi:10.1007/978-0-8176-4579-3. (With the collaboration of Madhav Nori and Peter Norman)

  55. Morrison, D.R., Taylor, W.: Classifying bases for 6D F-theory models. Cent. Eur. J. Phys. 10, 1072–1088 (2012). arXiv:1201.1943 [hep-th]

  56. McKay, J.: Graphs, singularities, and finite groups. In: The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979). Proc. Sympos. Pure Math., vol. 37, pp. 183–186. Am. Math. Soc., Providence (1980)

  57. Jung H.W.E.: Darstellung der Funktionen eines algebraischen Körpers zweier unabhängiger Veränderlicher x, y in der Umgebung einer Stelle x = a, y = b. J Reine Angew. Math. 133, 289–314 (1908)

    MathSciNet  MATH  Google Scholar 

  58. Hirzebruch F.: Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen. Math. Ann. 126, 1–22 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  59. Brieskorn E.: Rationale singularitäten komplexer flächen. Invent. Math. 4, 336–358 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Riemenschneider O.: Deformationen von Quotientensingularitäten (nach zyklischen Gruppen. Math. Ann. 209, 211–248 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  61. Iyama, O., Wemyss, M.: The classification of special Cohen–Macaulay modules. Math. Zeitsch. 265, 41–83 (2009). arXiv:0809.1958 [math.AG]

  62. Martinec, E.J., Moore, G.W.: On decay of K theory. arXiv:hep-th/0212059

  63. Apruzzi, F., Fazzi, M., Passias, A., Rota, A., Tomasiello, A.: Holographic compactifications of (1, 0) theories from massive IIA supergravity. arXiv:1502.06616 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Heckman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Zotto, M., Heckman, J.J., Park, D.S. et al. On the Defect Group of a 6D SCFT. Lett Math Phys 106, 765–786 (2016). https://doi.org/10.1007/s11005-016-0839-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0839-5

Mathematics Subject Classification

Keywords

Navigation