Skip to main content
Log in

The Density of Surface States as the Total Time Delay

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

For a scattering problem of tight-binding Bloch electrons by a weak random surface potential, a generalized Levinson theorem is put forward showing the equality of the total density of surface states and the density of the total time delay. The proof uses explicit formulas for the wave operators in the new rescaled energy and interaction representation, as well as an index theorem for adequate associated operator algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrein, W.O., Boutet de Monvel, A., Georgescu, V.: \({C_{0}}\)-groups, commutator methods and spectral theory of N-body Hamiltonians. Progress Math., vol. 135. Birkhäuser, Basel (1996)

  2. Bellissard, J.: K-Theory of \({C^*}\)-algebras in solid state physics. In: Dorlas, T.C., Hugenholtz, M.N., Winnink, M. (eds.) Statistical Mechanics and Field Theory, Mathematical Aspects. Lecture Notes in Physics, vol. 257, pp. 99–156 (1986)

  3. Bellissard J., Schulz-Baldes H.: Scattering theory for lattice operators in dimension \({d \geq 3}\). Rev. Math. Phys. 24, 1250020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blackadar B.: K-Theory for Operator Algebras, 2nd edn. Cambridge University Press, Cambridge(1998)

    MATH  Google Scholar 

  5. Chahrour A.: Densité intégrée d’états surfaciques et fonction généralisée de déplacement spectral pour un opérateur de Schrödinger surfacique ergodique. Helv. Phys. Acta. 72, 93–122 (1999)

    MathSciNet  Google Scholar 

  6. Chahrour A., Sahbani J.: On the spectral and scattering theory of the Schrödinger operator with surface potential. Rev. Math. Phys. 12, 561–574 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Englisch H., Kirsch W., Schröder M., Simon B.: Random Hamiltonians ergodic in all but one direction. Commun. Math. Phys. 128, 613–625 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Georgescu, V., Iftimovici, A.: C\({^*}\)-algebras of quantum Hamiltonians. In: Operator Algebras and Mathematical Physics, Conference Proceedings 2001, 123–167, Theta Foundation (2003)

  9. Graf G.-M., Schenker D.: 2-magnon scattering in the Heisenberg model. Ann. de l’Inst. H. Poincaré, Sect. A. 67, 91–107 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Jaksic, V., Molchanov, S., Pastur, L.: On the propagation properties of surface waves. In: Papanicolaou, G. (ed.) Wave propagation in complex media. IMA Vol. Math. Appl. 96, 145–154

  11. Jaksic V., Molchanov S.: On the surface spectrum in dimension two. Helv. Phys. Acta. 71, 629–657 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Jaksic V., Molchanov S.: Localization of surface spectra. Commun. Math. Phys. 208, 153–172 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Jaksic V., Last Y.: Corrugated surfaces and the a.c. spectrum. Rev. Math. Phys. 12, 1465–1503 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Jaksic V., Last Y.: Surface states and spectra. Commun. Math. Phys. 218, 459–477 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Kellendonk J., Richard S.: Levinson’s theorem for Schrödinger operators with point interaction: a topological approach. J. Phys. A 39, 14397–14403 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Kellendonk J., Richard S.: On the wave operators and Levinsons theorem for potential scattering in \({{\mathbb R}^3}\). Asian-Eur. J. Math. 5, 1250004 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kohmoto M., Koma T., Nakamura S.: The spectral shift function and the Friedel sum rule. Ann. H. Poincaré. 14, 1413–1424 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kirsch W., Klopp F.: The band-edge behavior of the density of surfacic states. Math. Phys. Anal. Geom. 8, 315–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kostrykin V., Schrader R.: Regularity of the surface density of states. J. Funct. Anal. 187, 227–246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Levinson N.: On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase. Kgl. Danske Videnskabernes Selskab Mat.-fys. Medd. 25, 3–29 (1949)

    MathSciNet  MATH  Google Scholar 

  21. Richard S., Tiedrade Aldecoa R.: New expressions for the wave operators of Schrödinger operators in \({{\mathbb R}^3}\). Lett. Math. Phys. 103, 1207–1221 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Schulz-Baldes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulz-Baldes, H. The Density of Surface States as the Total Time Delay. Lett Math Phys 106, 485–507 (2016). https://doi.org/10.1007/s11005-016-0825-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0825-y

Mathematics Subject Classification

Keywords

Navigation