Skip to main content
Log in

A Remark on CFT Realization of Quantum Doubles of Subfactors: Case Index \({ < 4}\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well known that the quantum double \({D(N\subset M)}\) of a finite depth subfactor \({N\subset M}\), or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. It is big open conjecture that all (unitary) modular tensor categories arise from conformal field theory. We show that for every subfactor \({N\subset M}\) with index \({[M:N] < 4}\) the quantum double \({D(N\subset M)}\) is realized as the representation category of a completely rational conformal net. In particular, the quantum double of \({E_6}\) can be realized as a \({\mathbb{Z}_2}\)-simple current extension of \({{{\rm SU}(2)}_{10} \times {{\rm Spin}(11)}_1}\) and thus is not exotic in any sense. As a byproduct, we obtain a vertex operator algebra for every such subfactor. We obtain the result by showing that if a subfactor \({N\subset M }\) arises from \({\alpha}\)-induction of completely rational nets \({\mathcal{A}\subset \mathcal{B}}\) and there is a net \({\tilde{\mathcal{A}}}\) with the opposite braiding, then the quantum \({D(N\subset M)}\) is realized by completely rational net. We construct completely rational nets with the opposite braiding of \({{{\rm SU}(2)}_k}\) and use the well-known fact that all subfactors with index \({[M:N] < 4}\) arise by \({\alpha}\)-induction from \({{{\rm SU}(2)}_k}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böckenhauer, J.: An Algebraic Formulation of Level One Wess–Zumino–Witten Models. Technical Report DESY 95-138 (1996)

  2. Böckenhauer, J., Evans, D.E.: Modular invariants, graphs and α-induction for nets of subfactors. I. Commun. Math. Phys. 197(2), 361-386 (1998). arXiv:hep-th/9801171

  3. Böckenhauer J., Evans D.E., Kawahigashi Y.: Chiral structure of modular invariants for subfactors. Commun. Math. Phys. 210(3), 733–784 (2000)

    Article  ADS  MATH  Google Scholar 

  4. Böckenhauer J., Evans D.E., Kawahigashi Y.: Longo–Rehren subfactors arising from α-induction. Publ. Res. Inst. Math. Sci. 37(1), 1–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Böckenhauer J., Evans D.E., Kawahigashi Y.: On α-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208(2), 429–487 (1999)

    Article  ADS  MATH  Google Scholar 

  6. Bischoff, M.: Models in boundary quantum field theory associated with lattices and loop group models. Commun. Math. Phys. 1–32 (2012). arXiv:1108.4889v1 [math-ph]. doi:10.1007/s00220-012-1511-2

  7. Bischoff M., Kawahigashi Y., Longo R.: Characterization of 2d rational local conformal nets and its boundary conditions: the maximal case. Doc. Math. 20, 1137–1184 (2015)

    MathSciNet  Google Scholar 

  8. Bischoff, M., Kawahigashi, Y., Longo, R., Rehren, K.-H.: Phase boundaries in algebraic conformal QFT (2015). Commun. Math. Phys. arXiv:1405.7863v1 [math-ph]

  9. Bischoff M., Kawahigashi Y., Longo R., Rehren K.-H.: Tensor categories and endomorphisms of von Neumann algebras: with applications to quantum field theory. In: (eds) Springer Briefs in Mathematical Physics, vol. 3, Springer, New York (2015)

    Google Scholar 

  10. Carpi S.: On the representation theory of Virasoro nets. Commun. Math. Phys. 244(2), 261–284 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Carpi, S., Kawahigashi, Y., Longo, R., Weiner, M.: From vertex operator algebras to conformal nets and back (2015). arXiv:1503.01260

  12. Calegari F., Morrison S., Snyder N.: Cyclotomic integers, fusion categories, and subfactors. Commun. Math. Phys. 303(3), 845–896 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Carpi S., Weiner M.: On the uniqueness of diffeomorphism symmetry in conformal field theory. Commun. Math. Phys. 258(1), 203–221 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Drinfeld V., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories. I. Sel. Math. (N.S.) 16(1), 1–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199–230 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  16. Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. J. Reine Angew. Math. 677, 135–177 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Davydov A., Nikshych D., Ostrik V.: On the structure of the Witt group of braided fusion categories. Sel. Math. (N.S.). 19(1), 237–269 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Doplicher, S., Piacitelli, G.: Any compact group is a gauge group. Rev. Math. Phys. 14(7–8), 873–885 (2002). (Dedicated to Professor Huzihiro Araki on the occasion of his 70th birthday)

  19. Evans D.E., Gannon T.: The exoticness and realisability of twisted Haagerup-Izumi modular data. Commun. Math. Phys. 307(2), 463–512 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Evans, D.E., Kawahigashi, Y.: Quantum symmetries on operator algebras. In: Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1998)

  21. Fröhlich J., Kerler T.: Quantum groups, quantum categories and quantum field theory. In: Lecture Notes in Mathematics, vol. 1542, Springer, Berlin (1993)

    Google Scholar 

  22. Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators. III. Simple Curr. Nucl. Phys. B. 694(3), 277–353 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras. I. General theory. Commun. Math. Phys. 125(2), 201–226 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Goodman F. M., de la Harpe P., Jones V. F. R.: Coxeter graphs and towers of algebras. In: (eds) Mathematical Sciences Research Institute Publications, vol. 14, Springer, New York (1989)

    Google Scholar 

  25. Guido D., Longo R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181(1), 11–35 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Haagerup, U.: Principal graphs of subfactors in the index range \({4 < [M:N] < 3+\sqrt 2}\). Subfactors (Kyuzeso, 1993), pp. 1–38. World Scientific Publishing, River Edge, NJ (1994)

  27. Haag R.: Local quantum physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  28. Huang Y.Z., Kirillov A. Jr, Lepowsky J.: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337(3), 1143–1159 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hong, S.-M., Rowell, E., Wang, Z.: On exotic modular tensor categories. Commun. Contemp. Math. 10(suppl. 1), 1049–1074 (2008)

  30. Hayashi T., Yamagami S.: Amenable tensor categories and their realizations as AFD bimodules. J. Funct. Anal. 172(1), 19–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Izumi M.: The structure of sectors associated with Longo–Rehren inclusions I. General theory. Commun. Math. Phys. 213, 127–179 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Izumi M.: The structure of sectors associated with Longo–Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603–674 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jones V.F.R., Morrison S., Snyder N.: The classification of subfactors of index at most 5. Bull. Am. Math. Soc. (N.S.) 51(2), 277–327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jones, V.F.R.: Some unitary representations of Thompson’s groups F and T (2014). arXiv:1412.7740

  35. Jones V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kawahigashi, Y.: Conformal field theory, tensor categories and operator algebras, J. Phys. A 48(30), 303001, 57 (2015)

  37. Kawahigashi Y.: A remark on gapped domain walls between topological phases. Lett. Math. Phys. 105(7), 893–899 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Kawahigashi Y., Longo R.: Classification of local conformal nets case \({c < 1}\). Ann. Math. 160(2), 493–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kawahigashi Y., Longo R., Müger M.: Multi-iterval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631–669 (2001) arXiv:math/9903104

    Article  ADS  MATH  Google Scholar 

  40. KirillovJr A., Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of \({\mathfrak{sl}\_2}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002)

    Article  MathSciNet  Google Scholar 

  41. Kosaki H.: Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal. 66(1), 123–140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  42. Longo, R.: Conformal subnets and intermediate subfactors. Commun. Math. Phys. 237, 7–30 (2003). arXiv:math/0102196v2

  43. Longo, R., Rehren, K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567–597 (1995). arXiv:hep-th/9411077

  44. Longo, R., Roberts, J.E.: A theory of dimension. K-Theory 11(2), 103–159 (1997). arXiv:funct-an/9604008v1

  45. Longo R., Xu F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251(2), 321–364 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Müger M.: From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra 180(1–2), 81–157 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Müger M.: From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180(1–2), 159–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Müger M.: Conformal orbifold theories and braided crossed G-categories. Commun. Math. Phys. 260, 727–762 (2005)

    Article  ADS  MATH  Google Scholar 

  49. Müger, M.: On superselection theory of quantum fields in low dimensions. In: XVIth International Congress on Mathematical Physics, pp. 496–503 (2010)

  50. Masuda T.: Generalization of Longo-Rehren construction to subfactors of infinite depth and amenability of fusion algebras. J. Funct. Anal. 171(1), 53–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Moore, G., Seiberg, N.: Lectures on RCFT. Superstrings’89 (Trieste, 1989), pp. 1–129. World Scientific Publishing, River Edge, NJ (1990)

  52. Ocneanu, A.: Operator algebras, topology and subgroups of quantum symmetry—construction of subgroups of quantum groups. In: Taniguchi Conference on Mathematics Nara’98, pp. 235–263 (2001)

  53. Ocneanu A.: Quantized groups, string algebras and Galois theory for algebras. Oper. Algebras Appl. 2, 119–172 (1988)

    MathSciNet  Google Scholar 

  54. Ostrik, V.: Pivotal fusion categories of rank 3 (with an appendix written jointly with dmitri nikshych) (2013). arXiv:1309.4822

  55. Popa S.: Classification of amenable subfactors of type II. Acta Math. 172(2), 163–255 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  56. Popa S.: Symmetric enveloping algebras, amenability and AFD properties for subfactors. Math. Res. Lett. 1(4), 409–425 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  57. Popa, S.: Classification of subfactors and their endomorphisms. In: CBMS Regional Conference Series in Mathematics, vol. 86. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1995)

  58. Rehren K.-H.: Canonical tensor product subfactors. Commun. Math. Phys. 211(2), 395–406 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Rehren, K.-H.: Braid group statistics and their superselection rules. In: The Algebraic Theory of Superselection Sectors (Palermo, 1989), pp. 333– 355 (1990)

  60. Schauenburg P.: The monoidal center construction and bimodules. J. Pure Appl. Algebra 158(2-3), 325–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wassermann, A.: Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133(3), 467–538 (1998). arXiv:math/9806031v1 [math.OA]

  62. Xu, F.: Jones-Wassermann subfactors for disconnected intervals. Commun. Contemp. Math. 2(3), 307–347 (2000). arXiv:q-alg/9704003

  63. Xu, F.: Unpublished note. As cited in appendix [CMS11] (2001)

  64. Xu F.: Mirror extensions of local nets. Commun. Math. Phys. 270(3), 835–847 (2007)

    Article  ADS  MATH  Google Scholar 

  65. Xu, F.: On affine orbifold nets associated with outer automorphisms. Commun. Math. Phys. 291, 845–861 (2009). arXiv:1002.2710v1 [math.OA]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Bischoff.

Additional information

Supported in part by NSF Grant DMS-1362138.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bischoff, M. A Remark on CFT Realization of Quantum Doubles of Subfactors: Case Index \({ < 4}\) . Lett Math Phys 106, 341–363 (2016). https://doi.org/10.1007/s11005-016-0816-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0816-z

Mathematics Subject Classification

Keywords

Navigation