Skip to main content
Log in

Microscopic Conductivity of Lattice Fermions at Equilibrium. Part II: Interacting Particles

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We apply Lieb–Robinson bounds for multi-commutators we recently derived (Bru and de Siqueira Pedra, Lieb–Robinson bounds for multi-commutators and applications to response theory, 2015) to study the (possibly non-linear) response of interacting fermions at thermal equilibrium to perturbations of the external electromagnetic field. This analysis leads to an extension of the results for quasi-free fermions of (Bru et al. Commun Pure Appl Math 68(6):964–1013, 2015; Bru et al. J Math Phys 56:051901-1–051901-51, 2015) to fermion systems on the lattice with short-range interactions. More precisely, we investigate entropy production and charge transport properties of non-autonomous C*-dynamical systems associated with interacting lattice fermions within bounded static potentials and in presence of an electric field that is time and space dependent. We verify the 1st law of thermodynamics for the heat production of the system under consideration. In linear response theory, the latter is related with Ohm and Joule’s laws. These laws are proven here to hold at the microscopic scale, uniformly with respect to the size of the (microscopic) region where the electric field is applied. An important outcome is the extension of the notion of conductivity measures to interacting fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Araki H.: Relative entropy of states of von Neumann algebras. Publ. Res. Inst. Math. Sci. Kyoto Univ. 11, 809–833 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Araki H.: Relative entropy of states of von Neumann algebras II. Publ. Res. Inst. Math. Sci. Kyoto Univ. 13, 173–192 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Araki H., Moriya H.: Equilibrium statistical mechanics of fermion lattice systems. Rev. Math. Phys. 15, 93–198 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bratteli, O. Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, Vol. II, 2nd ed. Springer-Verlag, New York (1996)

  5. Bru, J.-B., de Siqueira Pedra, W.: Microscopic foundations of the Meißner effect—thermodynamic aspects. Rev. Math. Phys. 25, 1350011-1–1350011-66 (2013)

  6. Bru, J.-B., de Siqueira Pedra, W.: Microscopic foundations of Ohm and Joule’s laws—the relevance of thermodynamics. Mathematical Results in Quantum Mechanics: Proceedings of the QMath12 Conference. Pavel Exner, Wolfgang König, Hagen Neidhardt, editors. World Scientific Publishing Co. ISBN 9814618136 (2015)

  7. Bru, J.-B., de Siqueira Pedra, W.: Lieb–Robinson bounds for multi-commutators and applications to response theory (Submitted preprint) (2015)

  8. Bru, J.-B., de Siqueira Pedra, W.: From the 2nd law of thermodynamics to the AC-conductivity measure of interacting fermions in disordered media. Math. Models Methods Appl. Sci. 25(14), 2587–2632 (2015). doi:10.1142/S0218202515500566

  9. Bru, J.-B., de Siqueira Pedra, W., Hertling, C.: Heat production of non-interacting fermions subjected to electric fields. Commun. Pure Appl. Math. 68(6), 964–1013 (2015). doi:10.1002/cpa.21530

  10. Bru, J.-B., de Siqueira Pedra, W., Hertling, C.: Microscopic conductivity of lattice fermions at equilibrium—part I: non-interacting particles. J. Math. Phys. 56, 051901-1–051901-51 (2015)

  11. Bru, J.-B., de Siqueira Pedra, W., Hertling, C.: AC-conductivity measure from heat production of free fermions in disordered media. Arch. Rat. Mech. Anal. (2015). doi:10.1007/s00205-015-0935-1

  12. Bru, J.-B., de Siqueira Pedra, W., Hertling, C.: Macroscopic conductivity of free fermions in disordered media. Rev. Math. Phys. 26(5), 1450008-1–1450008-25 (2014)

  13. Ferry D.K.: Ohm’s law in a quantum world. Science 335(6064), 45–46 (2012)

    Article  ADS  Google Scholar 

  14. Giuliani, G.F., Vignale, G.: Quantum Theory of the Electron Liquid. Cambrigde Univ. Press, Cambridge (2005)

  15. Jaksic V., Pillet C.-A.: A note on the entropy production formula. Contemp. Math. 327, 175–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Klein A., Lenoble O., Müller P.: On Mott’s formula for the AC-conductivity in the Anderson model. Ann. Math. 166, 549–577 (2007)

    Article  MATH  Google Scholar 

  17. Klein A., Müller P.: The conductivity measure for the Anderson model. J. Math. Phys. Anal. Geom. 4, 128–150 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Klein, A.; Müller, P.: AC-conductivity and electromagnetic energy absorption for the Anderson model in linear response theory. Markov Process. Relat. Fields 21(3) (2015)

  19. Nachtergaele B., Ogata Y., Sims R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124(1), 1–13 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Nachtergaele B., Sims R.: Lieb–Robinson bounds in quantum many-body physics. Contemp. Math. 529, 141–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pusz W., Woronowicz S.L.: Passive states and KMS states for general quantum systems. Commun. math. Phys. 58, 273–290 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  22. Sims, R.: (2011) Lieb–Robinson bounds and quasi-locality for the dynamics of many-body quantum systems. Mathematical results in quantum physics. In: Exner, P. (ed.) Proceedings of the QMath 11 Conference in Hradec Kralove, Czech Republic 2010, 95–106. World Scientific, Hackensack

  23. Weber, B., et al.: Ohm’s law survives to the atomic scale. Science 335(6064), 64–67 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bernard Bru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bru, JB., de Siqueira Pedra, W. Microscopic Conductivity of Lattice Fermions at Equilibrium. Part II: Interacting Particles. Lett Math Phys 106, 81–107 (2016). https://doi.org/10.1007/s11005-015-0806-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0806-6

Mathematics Subject Classification

Keywords

Navigation