Skip to main content
Log in

Schur Function Identities Arising From the Basic Representation of \({A^{(2)}_{2}}\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A Lie theoretic interpretation is given for some formulas of Schur functions and Schur Q-functions. Two realizations of the basic representation of the Lie algebra \({A^{(2)}_2}\) are considered; one is on the fermionic Fock space and the other is on the bosonic polynomial space. Via the boson–fermion correspondence, simple relations of the vacuum expectation values of fermions turn out to be algebraic relations of Schur functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Y., Garsia, A. Remmel, J.: Algorithms for plethysm. In: Combinatorics and Algebra Contemporaray Mathematics, vol. 34, pp. 109–153

  2. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T. (eds.) Nonlinear Integrable Systems-Classical Theory and Quantum Theory, pp. 39–119. World Scienific Publishing, Singapore (1983)

  3. Frenkel I.B.: Two constructions of affine Lie algebra representations and boson–fermion correspondence in quantum field theory. J. Funct. Anal. 44(3), 259–327 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ikeda T., Mizukawa H., Nakajima T., Yamada H.-F.: Mixed expansion formula for the rectangular Schur functions and the affine Lie algebra \({A^{(1)}_{1}}\) . Adv. Appl. Math. 40(4), 514–535 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jing N.: Vertex operators, symmetric functions, and the spin group Γ n . J. Alg. 138(2), 340–398 (1991)

    Article  MATH  Google Scholar 

  6. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

  7. Leclerc B., Leidwanger S.: Schur functions and affine lie algebras. J. Alg. 210(1), 103–144 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Macdonald I.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  9. Mizukawa H., Yamada H.-F.: Rectangular Schur functions and the basic representation of affine Lie algebras. Discrete Math. 298(1–3), 285–300 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nakajima T., Yamada H.-F.: Schur’s Q-functions and twisted affine Lie algebras. Adv. Stud. Pure Math. 28, 241–259 (2000)

    MathSciNet  Google Scholar 

  11. Olsson, J.B.: Combinatorics and representations of finite groups. In: Lecture Notes in Mathematics at the University of Essen, vol. 20 (1993)

  12. Schur I.: Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene linear Substitutionen. J. Reine Angew. Math. 139, 155–250 (1911)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Mizukawa.

Additional information

H. Mizukawa was supported by KAKENHI 24740033. H.-F. Yamada was supported by KAKENHI 24540020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizukawa, H., Nakajima, T., Seno, R. et al. Schur Function Identities Arising From the Basic Representation of \({A^{(2)}_{2}}\) . Lett Math Phys 104, 1317–1331 (2014). https://doi.org/10.1007/s11005-014-0717-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0717-y

Mathematics Subject Classification

Keywords

Navigation