Skip to main content
Log in

Grothendieck–Teichmüller and Batalin–Vilkovisky

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is proven that, for any affine supermanifold M equipped with a constant odd symplectic structure, there is a universal action (up to homotopy) of the Grothendieck–Teichmüller Lie algebra \({\mathfrak{grt}_1}\) on the set of quantum BV structures (i.e. solutions of the quantum master equation) on M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Campos, R., Merkulov, S., Willwacher, T.: The Frobenius properad is Koszul (preprint arXiv:1402.4048)

  2. Dolgushev V.: Covariant and equivariant formality theorems. Adv. Math. 191(1), 147–177 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Drinfeld V.: On quasitriangular quasi-Hopf algebras and a group closely connected with \({Gal(\bar{Q}/Q)}\). Leningrad Math. J. 2(4), 829–860 (1991)

    MathSciNet  Google Scholar 

  4. Gerstenhaber M., Voronov A.A.: Homotopy G-algebras and moduli space operad. IMRN 3, 141–153 (1995)

    Article  MathSciNet  Google Scholar 

  5. Kapranov M., Manin Yu.I.: Modules and Morita theorem for operads. Am. J. Math. 123(5), 811–838 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Khudaverdian H.: Semidensities on odd symplectic supermanifolds. Commun. Math. Phys. 247, 353–390 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Kontsevich, M.: Formality conjecture. In: Sternheimer, D., et al. (eds.) Deformation Theory and Symplectic Geometry, pp. 139–156. Kluwer, Dordrecht (1997)

  8. Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Kravchenko, O.: Deformations of Batalin–Vilkovisky algebras. In: Poisson Geometry (Warsaw, 1998), Banach Center Publ., vol. 51, pp. 131–139. Polish Acad. Sci., Warsaw (2000)

  10. Loday J.-L., Vallette B.: Algebraic Operads. Number 346 in Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2012)

    Google Scholar 

  11. Schwarz A.: Geometry of Batalin–Vilkovisky quantization. Commun. Math. Phys. 155, 249–260 (1993)

    Article  ADS  MATH  Google Scholar 

  12. Tamarkin, D.: Action of the Grothendieck–Teichmüller group on the operad of Gerstenhaber algebras (preprint arXiv:math/0202039)

  13. Willwacher, T.: M. Kontsevich’s graph complex and the Grothendieck–Teichmüller Lie algebra (preprint arXiv:1009.1654)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Willwacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merkulov, S., Willwacher, T. Grothendieck–Teichmüller and Batalin–Vilkovisky. Lett Math Phys 104, 625–634 (2014). https://doi.org/10.1007/s11005-014-0692-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0692-3

Mathematics Subject Classification (1991)

Keywords

Navigation