Skip to main content
Log in

Spectral Duality Between Heisenberg Chain and Gaudin Model

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In our recent paper we described relationships between integrable systems inspired by the AGT conjecture. On the gauge theory side an integrable spin chain naturally emerges while on the conformal field theory side one obtains some special reduced Gaudin model. Two types of integrable systems were shown to be related by the spectral duality. In this paper we extend the spectral duality to the case of higher spin chains. It is proved that the N-site GL k Heisenberg chain is dual to the special reduced k + 2-points gl N Gaudin model. Moreover, we construct an explicit Poisson map between the models at the classical level by performing the Dirac reduction procedure and applying the AHH duality transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams M.R., Harnad J., Hurtubise J.: Dual moment maps into loop algebras. Lett. Math. Phys. 20, 299–308 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010) arXiv:0906.3219 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Awata H., Yamada Y.: Five-dimensional AGT conjecture and the deformed Virasoro algebra. JHEP 1001, 125 (2010) arXiv:0910.4431

    Article  MathSciNet  ADS  Google Scholar 

  4. Bao L., Pomoni E., Taki M., Yagi F.: M5-branes, toric diagrams and gauge theory duality. JHEP 4, 1–59 (2012) arXiv:1112.5228

    ADS  Google Scholar 

  5. Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  6. Bethe H.: Zur Theorie der Metalle. Zeitschrift für Physik 71(3-4), 205 (1931)

    Article  ADS  Google Scholar 

  7. Bertola M., Eynard B., Harnad J.: Duality, biorthogonal polynomials and multi-matrix models. Commun. Math. Phys. 229, 73–120 (2002) nlin/0108049

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Braden, H.W., Dolgushev, V.A., Olshanetsky, M.A., Zotov, A.V.: Classical r-matrices and the Feigin-Odesskii algebra via Hamiltonian and Poisson reductions, J. Phys. A: Math. Gen. 36, 6979–7000 (2003). hep-th/0301121

    Google Scholar 

  9. Braden, H.W., Marshakov, A., Mironov, A., Morozov,A.: On double-elliptic integrable systems: 1. A duality argument for the case of SU(2). Nucl. Phys. B 573(1), 553–572 (2000). arXiv:hep-th/9906240

    Google Scholar 

  10. Chernyakov, Yu., Levin, A., Olshanetsky, M., Zotov, A.: Elliptic Schlesinger system and Painleve VI. J. Phys. A: Math. Gen. 39, 12083 (2006). arXiv:nlin/0602043 [nlin.SI]

    Google Scholar 

  11. Chernyakov, Yu., Levin, A., Olshanetsky, M., Zotov, A.: Quadratic algebras related to elliptic curves. Theor. Math. Phys. 156, 1103–1122 (2008). arXiv:0710.1072

    Google Scholar 

  12. Chervov, A., Talalaev, D.: Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence. hep-th/0604128

  13. Dirac P.A.M.: Generalized Hamiltonian dynamics. Proc. Roy. Soc. Lond. A 246, 326 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Donagi, R., Witten, E.: Supersymmetric Yang-Mills theory and integrable systems. Nucl. Phys. B 460, 299–334 (1996). hep-th/9510101

    Google Scholar 

  15. Dorey, N., Hollowood, T.J., Lee, S.: Quantization of integrable systems and a 2d/4d duality. JHEP 10, 1–42 (2011). arXiv:1103.5726

  16. Dubrovin, B.A.; Krichever, I.M., Novikov, S.P.: Integrable systems. I, Current Problems in Mathematics. Fundamental Directions, vol. 4. Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 179–284 (1985, in Russian)

  17. Faddeev, L., Takhtajan, L.: Hamiltonian Approach to Solitons Theory. Nauka, Moscow (1986, in Russian). Springer, Berlin (1987)

  18. Feigin B., Frenkel E., Reshetikhin N.: Gaudin model, Bethe Ansatz and critical level. Commun. Math. Phys. 166, 27–62 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Gaiotto, D.: N = 2 dualities. JHEP 08, 034 (2012). arXiv:0904.2715 [hep-th]

  20. Garnier R.: Sur une classe de systèmes différentiels abéliens déduits de la théorie des équations linéaires. Rend. del Circ. Matematice Di Palermo 43(1), 155 (1919)

    Article  MATH  Google Scholar 

  21. Gaudin M.: Diagonalisation d’une classe d’hamiltoniens de spin. J. Physique 37, 1087–1098 (1976)

    Article  MathSciNet  Google Scholar 

  22. Gorsky, A., Krichever, I., Marshakov, A., Mironov, A., Morozov, A.: Integrability and Seiberg-Witten exact solution. Phys. Lett. B 355, 466–477 (1995). hep-th/9505035

    Google Scholar 

  23. Gorsky, A., Marshakov, A., Mironov, A., Morozov, A.: N = 2 Supersymmetric QCD and integrable spin chains: rational case N f <  2N c . Phys. Lett. B 380, 75–80 (1996). arXiv:hep-th/9603140

  24. Gorsky, A., Marshakov, A., Mironov, A., Morozov, A.: A Note on Spectral Curve for the Periodic Homogeneous XYZ-Spin Chain. arXiv:hep-th/9604078

  25. Gorsky, A., Gukov, S., Mironov, A.: Multiscale N = 2 SUSY field theories, integrable systems and their stringy/brane origin I. Nucl. Phys. B 517, 409–461 (1998). arXiv:hep-th/9707120

    Google Scholar 

  26. Gorsky, A., Mironov, A.: Integrable many-body systems and gauge theories. In: Aratyn, H., Sorin, A.S. (eds.) Integrable Hierarchies and Modern Physical Theories. NATO Science Series, II Mathematics, Physics and Chemistry, vol. 18, pp. 33–176 (2001). hep-th/0011197

  27. Gorsky, A., Gukov, S., Mironov, A.: Supersymmetric Yang-Mills theories, integrable systems and their stringy/brane origin-II. Nucl. Phys. B 518, 689 (1998). arXiv:hep-th/9710239

    Google Scholar 

  28. Harnad, J.: Dual isomonodromic deformations and moment maps to loop algebras. Commun. Math. Phys. 166, 337–365 (1994). hep-th/9301076

    Google Scholar 

  29. Heisenberg W.: Zur Theorie des Ferromagnetismus. Zeitschrift für Physik 49(9–10), 619 (1928)

    Article  ADS  MATH  Google Scholar 

  30. Hitchin N.J., Segal G.B., Ward R.S.: Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces. Clarendon Press, Oxford (1999)

    MATH  Google Scholar 

  31. Krichever I.: Methods of algebraic geometry in the theory of non-linear equations. Russ. Math. Surv. 32, 185 (1977)

    Article  MATH  Google Scholar 

  32. Krichever, I.M., Phong, D.H.: On the integrable geometry of soliton equations and N = 2 supersymmetric gauge theories. J. Differ. Geom. 45, 349–389 (1997). arXiv:hep-th/9604199

    Google Scholar 

  33. Levin, A., Olshanetsky, M., Zotov, A.: Hitchin systems—symplectic Hecke correspondence and two-dimensional version. Commun. Math. Phys. 236, 93–143 (2003). arXiv:nlin/0110045 [nlin.SI]

    Google Scholar 

  34. Levin, A.M., Olshanetsky, M.A., Zotov, A.V.: Monopoles and modifications of bundles over elliptic curves. SIGMA 5, 065 (2009). arXiv:0811.3056 [hep-th]

  35. Levin, A., Olshanetsky, M., Smirnov, A., Zotov, A.: Characteristic Classes and Hitchin systems. General construction. Commun. Math. Phys. 316(1), 1–44 (2012). arXiv:1006.0702 [math-ph]

  36. Levin, A., Olshanetsky, M., Smirnov, A., Zotov, A.: Calogero-Moser systems for simple Lie groups and characteristic classes of bundles. J. Geom. Phys. 62, 1810–1850 (2012). arXiv:1007.4127 [math-ph]

    Google Scholar 

  37. Levin, A., Olshanetsky, M., Smirnov, A., Zotov, A.: Characteristic Classes of SL(N)-Bundles and Quantum Dynamical Elliptic R-Matrices. arXiv:1208.5750 [math-ph]

  38. Levin, A., Olshanetsky, M., Smirnov, A., Zotov, A.: Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-trivial Bundles. arXiv:1207.4386 [math-ph]

  39. Levin, A., Zotov, A.: On rational and elliptic forms of Painlevé VI equation. In: Neretin, Yu., et~al. (eds.) Moscow Seminar in Mathematical Physics, II. Translations. Series~2. American Mathematical Society 221. Advances in the Mathematical Sciences, vol. 60, pp. 173–183 (2007)

  40. Levin, A., Olshanetsky, M., Zotov, A.: Painleve VI, rigid tops and reflection equation. Commun. Math. Phys. 268, 67–103 (2006). arXiv:math/0508058 [math.QA]

    Google Scholar 

  41. Losev, A., Nekrasov, N., Shatashvili, S.: Issues in topological gauge theory. Nucl. Phys. B 534, 549–611 (1998). hep-th/9711108

    Google Scholar 

  42. Losev, A., Nekrasov, N., Shatashvili, S.: Testing Seiberg-Witten solution. In: NATO Advanced Study Institute on Strings, Branes and Dualities, Cargese, France, 26 May–14 Jun 1997, pp. 359–372. hep-th/9801061

  43. Marshakov A., Mironov A., Morozov A.: On AGT relations with surface operator insertion and stationary limit of beta-ensembles. J. Geom. Phys. 61, 1203–1222 (2011) arXiv:1011.4491

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Marshakov, A., Mironov, A.: 5d and 6d Supersymmetric gauge theories: prepotentials from integrable systems. Nucl. Phys. B 518, 59–91 (1998). hep-th/9711156

    Google Scholar 

  45. Maruyoshi, K., Taki, M.: Deformed prepotential, quantum integrable system and Liouville field theory. Nucl. Phys. B 841, 388–425 (2010). arXiv:1006.4505

    Google Scholar 

  46. Mironov, A., Morozov, A., Zenkevich, Y., Zotov, A.: Spectral Duality in Integrable Systems from AGT Conjecture. arXiv:1204.0913 [hep-th]

  47. Mironov, A., Morozov, A.: Nekrasov functions and exact Bohr-Sommerfeld integrals. JHEP 04, 040 (2010). arXiv:0910.5670

  48. Mironov, A., Morozov, A.: Nekrasov functions from exact BS periods: the Case of SU(N). J. Phys. A 43, 195401 (2010). arXiv:0911.2396

    Google Scholar 

  49. Mironov, A., Morozov, A.: The power of Nekrasov functions. Phys. Lett. B 680, 188–194 (2009). arXiv:0908.2190; Nucl. Phys. B 825, 1–37 (2009). arXiv:0908.2569

  50. Mironov, A., Morozov, A., Shakirov, Sh.: A direct proof of AGT conjecture at β =  1. JHEP 1102, 067 (2011). arXiv:1012.3137

  51. Mironov, A., Morozov, A., Shakirov, Sh.: Matrix model conjecture for exact BS periods and Nekrasov functions. JHEP 02, 030 (2010). arXiv:0911.5721

  52. Mironov, A., Morozov, A., Shakirov, S.: Towards a proof of AGT conjecture by methods of matrix models. Int. J. Mod. Phys. A 27, 1230001 (2012). arXiv:1011.5629

    Google Scholar 

  53. Mironov, A., Morozov, A., Runov, B., Zenkevich, Y., Zotov, A.: Spectral Duality Between Heisenberg Chain and Gaudin Model. arXiv:1206.6349

  54. Mironov, A., Morozov, A.: Commuting Hamiltonians from Seiberg-Witten theta-functions. Phys. Lett. B 475, 71–76 (2000). arXiv:hep-th/9912088

    Google Scholar 

  55. Mironov, A., Morozov, A., Shakirov, Sh., Smirnov, A.: Proving AGT conjecture as HS duality: extension to five dimensions. Nucl. Phys. B 855, 128–151 (2012). arXiv:1105.0948

    Google Scholar 

  56. Mironov, A., Morozov, A., Runov, B., Zenkevich, Y., Zotov, A.: Spectral duality between XXZ chains and 5d gauge theories. To appear

  57. Moore, G., Nekrasov, N., Shatashvili, S.: Integrating over Higgs branches. Commun. Math. Phys. 209, 97–121 (2000). hep-th/9712241

    Google Scholar 

  58. Moore, G., Nekrasov, N., Shatashvili, S.: D-particle bound states and generalized instantons. Commun. Math. Phys. 209(1), 77–95 (2000). hep-th/9803265

    Google Scholar 

  59. Mukhin, E., Tarasov, V., Varchenko, A.: Bispectral and (gl N ,gl M ) dualities. Funct. Anal. Math. 1, 47–69 (2006). math.QA/0510364

  60. Mukhin, E., Tarasov, V., Varchenko, A.: Bispectral and (gl N , gl M ) dualities, discrete versus differential. Adv. Math. 218, 216–265 (2008). math.QA/0605172

  61. Mukhin, E., Tarasov, V., Varchenko, A.: A generalization of the Capelli identity. Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol. 270, pp. 383–398 (2009). arXiv:math/0610799 [math.QA]

  62. Nekrasov, N., Shatashvili, S.: Quantization of integrable systems and four dimensional gauge theories. In: Exner, P. (ed.) XVI Congress on Mathematical Physics, pp. 265–289. World Scientific, Singapore (2010). arXiv:0908.4052

  63. Nekrasov, N., Rosly, A., Shatashvili, S.: Darboux coordinates, Yang-Yang functional, and gauge theory. Nucl. Phys. B (Suppl.) 216, 69–93 (2011). arXiv:1103.3919

    Google Scholar 

  64. Nekrasov, N.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). hep-th/0206161

  65. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. Prog. Math. 244, 525–596 (2006). hep-th/0306238

    Google Scholar 

  66. Ruijsenaars S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems. Commun. Math. Phys. 115, 127–165 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. Seiberg, N., Witten, E.: Monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19–52 (1994). hep-th/9407087

    Google Scholar 

  68. Seiberg, N., Witten, E.: Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994). hep-th/9408099

    Google Scholar 

  69. Sklyanin E.K.: Separation of variables. New trends. Prog. Theor. Phys. 118, 35–60 (1995) arXiv:solv-int/9504001

    Article  MathSciNet  ADS  Google Scholar 

  70. Talalaev D.: The quantum Gaudin system. Funct. Anal. Appl. 40, 73–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wilson G.: Bispectral commutative ordinary differential operators. J. Reine Angew. Math. 442, 177–204 (1993)

    MathSciNet  MATH  Google Scholar 

  72. Yamada, Y.: A quantum isomonodromy equation and its application to N = 2 SU(N) gauge theories. J. Phys. A 44, 055403 (2011). arXiv:1011.0292

    Google Scholar 

  73. Zabrodin, A., Zotov, A.: Quantum Painleve-Calogero correspondence. J. Math. Phys. 53, 073507 (2012). arXiv:1107.5672 [math-ph]

    Google Scholar 

  74. Zabrodin A., Zotov A.: Quantum Painleve-Calogero correspondence for Painleve VI. J. Math. Phys. 53, 073508 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  75. Zenkevich Y.: Nekrasov prepotential with fundamental matter from the quantum spin chain. Phys. Lett. B 701, 630–639 (2011) arXiv:1103.4843

    Article  MathSciNet  ADS  Google Scholar 

  76. Zotov A.: Elliptic linear problem for Calogero-Inozemtsev model and Painleve VI equation. Lett. Math. Phys. 67, 153–165 (2004) arXiv:hep-th/0310260

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Zotov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, A., Morozov, A., Runov, B. et al. Spectral Duality Between Heisenberg Chain and Gaudin Model. Lett Math Phys 103, 299–329 (2013). https://doi.org/10.1007/s11005-012-0595-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0595-0

Mathematics Subject Classification (2010)

Keywords

Navigation