Skip to main content
Log in

A Reconstruction Theorem for Almost-Commutative Spectral Triples

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose an expansion of the definition of almost-commutative spectral triple that accommodates non-trivial fibrations and is stable under inner fluctuation of the metric and then prove a reconstruction theorem for almost-commutative spectral triples under this definition as a simple consequence of Connes’s reconstruction theorem for commutative spectral triples. Along the way, we weaken the orientability hypothesis in the reconstruction theorem for commutative spectral triples and, following Chakraborty and Mathai, prove a number of results concerning the stability of properties of spectral triples under suitable perturbation of the Dirac operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett J.W.: Lorentzian version of the noncommutative geometry of the Standard Model of particle physics. J. Math. Phys. 48(1), 012303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  2. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Grundlehren Text Editions. Springer, Berlin (2004). Corrected reprint of the 1992 original

  3. Boeijink J., van Suijlekom W.D.: The noncommutative geometry of Yang-Mills fields. J. Geom. Phys. 61(6), 1122–1134 (2011)

    Article  ADS  MATH  Google Scholar 

  4. Ćaćić B.: Moduli spaces of Dirac operators for finite spectral triples. In: Marcolli, M., Parashar, D. (eds) Quantum Groups and Noncommutative Spaces. Aspects Math., vol. 41, pp. 9–68. Vieweg + Teubner, Wiesbaden (2011)

    Google Scholar 

  5. Carey A., Phillips J.: Unbounded Fredholm modules and spectral flow. Can. J. Math. 50(4), 673–718 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakraborty P.S., Mathai V.: The geometry of determinant line bundles in noncommutative geometry. J. Noncommut. Geom. 3(4), 559–578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chamseddine A.H., Connes A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Chamseddine A.H., Connes A., Marcolli M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11(6), 991–1089 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Connes A.: The action functional in noncommutative geometry. Commun. Math. Phys. 117(4), 673–683 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Connes A.: Geometry from the spectral point of view. Lett. Math. Phys. 34(3), 203–238 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Connes A.: Noncommutative geometry and reality. J. Math. Phys. 36(11), 6194–6231 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Connes A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182(1), 155–176 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Connes A.: Noncommutative geometry and the standard model with neutrino mixing. J. High Energy Phys. 11, 081 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  14. Connes, A.: On the spectral characterization of manifolds. arXiv:0810.2088v1 [math.OA] (2008)

  15. Connes, A.: The spectral characterization of manifolds. Distinguished Lecture, Thematic Program on Operator Algebras. Fields Institute, Toronto, ON, Canada, May 28, 2008

  16. Connes A., Marcolli M.: Noncommutative Geometry, Quantum Fields and Motives. American Mathematical Society Colloquium Publications, vol. 55. American Mathematical Society, Providence (2008)

    Google Scholar 

  17. van den Dungen, K.: The structure of gauge theories in almost-commutative geometries. Master’s thesis, Radboud University Nijmegen (2011)

  18. Figueroa H., Gracia-Bondía J.M., Lizzi F., Várilly J.C.: A nonperturbative form of the spectral action principle in noncommutative geometry. J. Geom. Phys. 26(3–4), 329–339 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Gilkey P.B.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Studies in Advanced Mathematics. 2nd edn. CRC Press, Boca Raton (1995)

    Google Scholar 

  20. Gracia-Bondía J.M., Várilly J.C., Figueroa H.: Elements of Noncommutative Geometry. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Boston (2001)

    Google Scholar 

  21. Higson N.: The residue index theorem of Connes and Moscovici. In: Higson, N., Roe, J. (eds) Surveys in Noncommutative Geometry. Clay Math. Proc., vol. 6, pp. 71–126. Amer. Math. Soc., Providence (2006)

    Google Scholar 

  22. Iochum, B., Levy, C., Vassilevich, D.: Spectral action beyond the weak-field approximation. arXiv:1108.3749v1 [hep-th] (2011)

  23. Iochum B., Schücker T., Stephan C.: On a classification of irreducible almost commutative geometries. J. Math. Phys. 45(12), 5003–5041 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Jureit J.-H., Stephan C.A.: On a classification of irreducible almost commutative geometries, a second helping. J. Math. Phys. 46(4), 043512 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Jureit J.-H., Schücker T., Stephan C.: On a classification of irreducible almost commutative geometries III. J. Math. Phys. 46, 072303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  26. Jureit J.-H., Stephan C.A.: On a classification of irreducible almost commutative geometries IV. J. Math. Phys. 49(3), 033502 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. Jureit J.-H., Stephan C.A.: On a classification of irreducible almost commutative geometries, V. J. Math. Phys. 50(7), 072301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  28. Krajewski T.: Classification of finite spectral triples. J. Geom. Phys. 28(1–2), 1–30 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Mesland, B.: Bivariant K-theory of groupoids and the noncommutative geometry of limit sets. Bonner Mathematische Schriften, vol. 394. Universität Bonn, Mathematisches Institut, Bonn (2009)

  30. Mesland, B.: Unbounded bivariant K-theory and correspondences in noncommutative geometry. arXiv:0904.4383v2 [math.KT] (2009)

  31. Paschke M., Sitarz A.: Discrete spectral triples and their symmetries. J. Math. Phys. 39(11), 6191–6205 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Reed M., Simon B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  33. Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  34. Rennie, A., Várilly, J.C.: Reconstruction of manifolds in noncommutative geometry. arXiv:math/0610418v4 [math.OA] (2006)

  35. Roe, J.: Elliptic Operators, Topology and Asymptotic Methods, 2nd edn. Pitman Research Notes in Mathematics Series, vol. 395. Longman, Harlow (1998)

  36. Roepstorff, G., Vehns, Ch.: An introduction to Clifford supermodules. arXiv:math-ph/9908029v2 (1999)

  37. Roepstorff, G., Vehns, Ch.: Generalized Dirac operators and superconnections. arXiv:math-ph/9911006v1 (1999)

  38. Zhang, D.: Projective Dirac operators, twisted K-theory and local index formula. Ph.D. dissertation, California Institute of Technology (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branimir Ćaćić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ćaćić, B. A Reconstruction Theorem for Almost-Commutative Spectral Triples. Lett Math Phys 100, 181–202 (2012). https://doi.org/10.1007/s11005-011-0534-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-011-0534-5

Mathematics Subject Classification (2000)

Keywords

Navigation