Skip to main content
Log in

Acoustic monitoring of gas emissions from the seafloor. Part II: a case study from the Sea of Marmara

  • Special Issue Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

A rotating, acoustic gas bubble detector, BOB (Bubble OBservatory) module was deployed during two surveys, conducted in 2009 and 2011 respectively, to study the temporal variations of gas emissions from the Marmara seafloor, along the North Anatolian Fault zone. The echosounder mounted on the instrument insonifies an angular sector of 7° during a given duration (of about 1 h). Then it rotates to the next, near-by angular sector and so forth. When the full angular domain is insonified, the “pan and tilt system” rotates back to its initial position, in order to start a new cycle (of about 1 day). The acoustic data reveal that gas emission is not a steady process, with observed temporal variations ranging between a few minutes and 24 h (from one cycle to the other). Echo-integration and inversion performed on the acoustic data as described in the companion paper of Leblond et al. (Mar Geophys Res, 2014), also indicate important variations in, respectively, the target strength and the volumetric flow rates of individual sources. However, the observed temporal variations may not be related to the properties of the gas source only, but reflect possible variations in sea-bottom currents, which could deviate the bubble train towards the neighboring sector. During the 2011 survey, a 4-component ocean bottom seismometer (OBS) was co-located at the seafloor, 59 m away from the BOB module. The acoustic data from our rotating, monitoring system support, but do not provide undisputable evidence to confirm, the hypothesis formulated by Tary et al. (2012), that the short-duration, non-seismic micro-events recorded by the OBS are likely produced by gas-related processes within the near seabed sediments. Hence, the use of a multibeam echosounder, or of several split beam echosounders should be preferred to rotating systems, for future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alpar B (1999) Underwater signatures of the Kocaeli earthquake of 17 August 1999 in Turkey. Turk J Mar Sci 5:111–130

    Google Scholar 

  • Alpar B, Yuce H (1997) Short and tidal period sea-level variations along the Turkish Strait system. Turk J Mar Sci 3:11–22

    Google Scholar 

  • Armijo R, Pondard N, Meyer B, Uçarkus G (2005) Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): implications for seismic hazard in Istanbul. Geochem Geophys Geosyst 6:Q06009

    Article  Google Scholar 

  • Artemov YG, Egorov VN, Polikarpov GG, Gulin SB (2007) Methane emission to the hydro—and atmosphere by gas bubble streams in the Dnieper paleo-delta, the Black Sea (in Russian). Rep Natl Acad Sci Ukr 5:110–116

    Google Scholar 

  • Bayon G, Dupré S, Ponzevera E, Etoubleau J, Cheron S, Pierre C, Mascle J, Boetius A, de Lange GJ (2013) Formation of carbonate chimneys in the Mediterranean Sea linked to deep-water oxygen depletion. Nat Geosci 6 (9):755–760. doi:10.1038/ngeo1888. http://www.nature.com/ngeo/journal/v6/n9/abs/ngeo1888.html#supplementary-information

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623–626

    Article  Google Scholar 

  • Boles JR, Clark JF, Leifer I, Washburn L (2001) Temporal variation in natural methane seep rate due to tides, Coal Oil point area, California. J Geophys Res 106(11):27077–27086

    Article  Google Scholar 

  • Bourry C, Chazallon B, Charlou JL, Donval JP, Ruffine L, Henry P, Géli L, Çagatay N, Inan S, Moreau M (2009) Free gas and gas hydrates from the Sea of Marmara, Turkey Chemical and structural characterization. Chem Geol 264:197–206

    Article  Google Scholar 

  • Briggs KB, Richardson MD (1996) Variability in in situ shear strength of gassy muds. Geo Mar Lett 16:189–195

    Article  Google Scholar 

  • Buskirk RE, Frohlich C, Latham GV, Chen AT, Lawton J (1981) Evidence that biological activity affects ocean bottom seismograph recordings. Mar Geophys Res 5(2):189–205

    Google Scholar 

  • Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles 380. Academic Press, New York

    Google Scholar 

  • Crémière A, Bayon G, Ponzevera E, Pierre C (2013) Paleo-environmental controls on cold seep carbonate authigenesis in the Sea of Marmara. Earth Planet Sci Lett 376:200–211. doi:10.1016/j.epsl.2013.06.029

    Article  Google Scholar 

  • Diaz J, Gallart J, Gaspà O (2007) Atypical seismic signals at the Galicia Margin, North Atlantic Ocean, related to the resonance of subsurface fluid-filled cracks. Tectonophysics 433:1–13. doi:10.1016/j.tecto.2007.01.004

    Article  Google Scholar 

  • Dragesund O, Olsen S (1965) On the possibility of estimating year-class strength by measuring echo-abundance of 0-group fish. Fiskeridirektoratets Skrifter Serie Havundersøkelser 13(8):48–65

    Google Scholar 

  • Duan Z, Møller N, Weare JH (1992a) An equation of state for the CH4–CO2–H2O system: I. Pure systems from 0–1,000°C and 0 to 8,000 bar. Geochim Cosmochim Acta 56:2605–2617

    Article  Google Scholar 

  • Duan Z, Møller N, Weare JH (1992b) An equation of state for the CH4–CO2–H2O system: II. Mixtures from 50–1,000 & #xB0;C and 0 to1,000 bar. Geochim Cosmochim Acta 56:2619–2631

    Article  Google Scholar 

  • Dupré S, Buffet G, Mascle J, Foucher J-P, Gauger S, Boetius A, Marfia C, the AsterX AUV Team, the Quest ROV Team, the BIONIL Scientific Party (2008) High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys. Mar Geophys Res 29(4):275–290. doi:10.1007/s11001-009-9063-3

    Article  Google Scholar 

  • Dupré S, Woodside J, Klaucke I, Mascle J, Foucher J-P (2010a) Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Mar Geol 275(1–4):1–19

    Article  Google Scholar 

  • Dupré S, Scalabrin C, Géli L, Henry P, Grall C, Tary J-B, Çagatay MN, Imren C, The MARMESONET Scientific Party Team (2010b) Widespread gas emissions in the Sea of Marmara in relation with the tectonic and sedimentary environments: results from shipborne multibeam echosounder water column imagery (MARMESONET expedition, 2009). Eur Geosci Union Gen Assem 12:9429

    Google Scholar 

  • Ergin M, Saydam C, Baştürk Ö, Erdem E, Yörük R (1991) Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern sea of Marmara. Chem Geol 91:269–285

    Article  Google Scholar 

  • Fischer PJ (ed) (1978) Natural gas and oil seeps, Santa Barbara Basin, California. In: California offshore gas, oil, and tar seeps. California State Lands Commission, Sacramento, California, pp 1–62

  • Foote KG (1982) Optimizing copper spheres for precision calibration of hydroacoustic equipment. J Acoust Soc Am 71:742–747

    Article  Google Scholar 

  • Foote KG (1983) Use of elastic spheres as calibration targets. In: Nakken O, Venema SC (eds) Symposium on Fisheries Acoustics. FAO Fisheries Report No. 300, pp 52–58

  • Foote KG, Knudsen HP, Vestnes G, MacLennan DN, Sirnrnonds EJ (1987) Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Coop Res Rep 144:69

    Google Scholar 

  • Foucher JP, Dupré S, Scalabrin C, Feseker T, Harmegnies F, Nouzé H (2010) Changes in seabed morphology, mud temperature and free gas venting at the Håkon Mosby Mud Volcano, offshore Northern Norway, over the time period 2003–2006. Geo Mar Lett 30:157–167

    Article  Google Scholar 

  • Gasperini L, Polonia A, Del Bianco F, Etiope G, Marinaro G, Favali P, Italiano F, Çağatay MN (2012) Gas seepages and seismogenic structures along the North Anatolian Fault in the eastern Marmara Sea. Geochem Geophys Geosyst 13:Q10018. doi:10.1029/2012GC004190

  • Géli L, Henry P, Zitter T, Dupré S, Tryon M, Çagatay NM, Mercier de Lépinay B, Le Pichon X, Sengör AMC, Görür N, Natalin B, Uçarkus G, Özeren S, Volker D, Gasperini L, Bourlange S, The Marnaut Scientific Party (2008) Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara. Earth Planet Sci Lett 274:34–39

    Article  Google Scholar 

  • Géli L, Henry P, Cagatay N (2009) Report of Marmesonet Cruise of R/V Le Suroit, Leg 1 (November 4–25, 2009). p.f.henry.free.fr/marmara/public/MARMESONET/Marmesonet_Leg1_Cruise_Report_FINAL.pdf

  • Grall C, Henry P, Tezcan D, Géli L, de Lepinay BM, Rudkiewicz L-J, Zitter T, Harmegnies F (2012) Heat flow in the Sea of Marmara Central Basin: possible implications for the tectonic evolution of the North Anatolian Fault. Geology 40:3–6. doi:10.1130/G32192.1

    Article  Google Scholar 

  • Greinert J (2008) Monitoring temporal variability of bubble release at seeps: the hydroacoustic swath system GasQuant. J Geophys Res Oceans 113:20

    Google Scholar 

  • Greinert J, Nutzel B (2004) Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps. Geo Mar Lett 24:75–85. doi:10.1007/s00367-003-0165-7

    Article  Google Scholar 

  • Greinert J, Artemov Y, Egorov V, De Batist M, McGinnis D (2006) 1300-m-high rising bubbles from mud volcanoes at 208 0 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth Planet Sci Lett 244(1–2):1–15. doi:10.1016/j.epsl.2006.02.011

    Article  Google Scholar 

  • Henry P, and MarNaut Cruise Sci. Party (2007) MarNaut Cruise of R/V L’Atalante report (2007). p.f.henry.free.fr/marmara/marnaut_public/marnaut_final_reports/MARNAUT_report.pdf

  • Hornafius JS, Derek Q, Luyendyk BP (1999) The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J Geophys Res 104:20703–20712. doi:10.1029/1999JC900148

    Article  Google Scholar 

  • Hovland M (2007) Discovery of prolific natural methane seeps at Gullfaks, northern North Sea. Geo Mar Lett 27(2–4):197–201

    Article  Google Scholar 

  • Hovland M, Sommerville JH (1985) Characteristics of two natural gas seepages in the North Sea. Mar Pet Geol 2:319–326

    Article  Google Scholar 

  • Hustoft S, Bünz S, Mienert J, Chand S (2009) Gas hydrate reservoir and active methane-venting province in sediments on <20 Ma young oceanic crust in the Fram Strait, offshore NW-Svalbard. Earth Planet Sci Lett. doi:10.1016/j.epsl.2009.03.038.s

    Google Scholar 

  • Judd A, Hovland M (2007) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge University Press, Cambridge 475

    Book  Google Scholar 

  • Knies J, Damm E, Gutt J, Mann U, Pinturier L (2004) Near-surface hydrocarbon anomalies in shelf sediments off Spitsbergen: evidences for past seepages. Geochem Geophys Geosyst 5:Q06003. doi:10.01029/02003GC000687

    Article  Google Scholar 

  • Kopf A, Delisle G, Faber E, Panahi B, Aliyev CS, Guliyev I (2009) Long-term in situ monitoring at Dashgil mud volcano, Azerbaijan: a link between seismicity, pore-pressure transients and methane emission. Int J Earth Sci 99:227–240 and Erratum 99: 241

    Article  Google Scholar 

  • Kopf A, Delisle G, Faber E, Panahi B, Aliyev CS, Guliyev I (2010) Long-term in situ monitoring at Dashgil mud volcano, Azerbaijan: a link between seismicity, pore-pressure transients and methane emission. Int J Earth Sci 99:227–240. doi:10.1007/s00531-0009-0487-4

  • Kuşçu İ, Okamura M, Matsuoka H, Awata Y (2002) Active faults in the Gulf of İzmit on the North Anatolian Fault, NW Turkey: a high-resolution shallow seismic study. Mar Geol 190:421–443

    Article  Google Scholar 

  • Kuscu I, Okamura M, Matsuoka H, Gokasan E, Awata Y, Tur H, Simsek M (2005) Seafloor gas seeps and sediment failures triggered by the August 17, 1999 earthquake in the Eastern Part of the Gulf of Izmit, Sea of Marmara, NW Turkey. Mar Geol 215:193–214

    Article  Google Scholar 

  • Laigle M, Bécel A, de Voogd B, Hirn A, Taymaz A, Ozalaybey S, Members of SEISMARMARA Leg 1 Team (2008) A first deep seismic survey in the Sea of Marmara: deep basins and the whole crust architecture and evolution. Earth Planet Sci Lett 270:168–179. doi:10.1016/j.eps12008.02031

    Article  Google Scholar 

  • Le Pichon X, Sengor AMC, Demirbag E, Rangin C, Imren C, Armijo R, Gorur N, Cagatay N, Mercier de Lépinay B, Meyer B, Saatcilar R, Tok B (2001) The active Main Marmara fault. Earth Planet Sci Lett 192:595–616

  • Leblond I, Scalabrin C, Berger L (2014) Acoustic monitoring of gas emissions from the seafloor. Part I: quantifying the volumetric flow of bubbles. Mar Geophys Res (this issue). doi:10.1007/s11001-014-9223-y

    Google Scholar 

  • Leifer JR, Boles BP (2005a) Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment. Mar Pet Geol 22:551–568. doi:10.1016/j.marpetgeo.2004.10.026

    Article  Google Scholar 

  • Leifer I, Boles JR (2005b) Turbine tent measurements of marine hydrocarbon seeps on subhourly timescales. J Geophys Res 110:C01006. doi:10.1029/2003JC002207

    Google Scholar 

  • Leifer I, Clark JF (2002) Modeling trace gases in hydrocarbon seep bubbles: application to marine hydrocarbon seeps in the Santa Barbara Channel. Russ Geol Geophys 47:572–579

    Google Scholar 

  • Leifer I, Boles JR, Luyendyk BP, Clark JF (2004) Transient discharges from marine hydrocarbon seeps: spatial and temporal variability. Environ Geol Berl 46:1038–1052. doi:10.1007/s00254-004-1091-3

    Article  Google Scholar 

  • Leighton TG, White PR (2011) Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions. Proc R Soc A Math Phys Eng Sci 468(2138):485–510

    Article  Google Scholar 

  • Limonov AF, van Weering TCE, Kenyon NH, Ivanov MK, Meisner LB (1997) Seabed morphology and gas venting in the Black Sea mudvolcano area: observations with the MAK-1 deep-tow sidescan sonar and bottom sprofiler. Mar Geol 137:121–136

    Article  Google Scholar 

  • Løseth H, Gading M, Wensaas L (2009) Hydrocarbon leakage interpreted on seismic data. Mar Pet Geol 26:1304–1319

    Article  Google Scholar 

  • Mattson MD, Likens GE (1990) Air pressure andmethane fluxes. Nature 347:718–719. doi:10.1038/347718b0

    Article  Google Scholar 

  • Mau S, Rehder G, Arroyo IG, Gossler J, Suess E (2007) Indications of a link between seismotectonics and CH4 release from seeps off Costa Rica. Geochem Geophys Geosyst 8:1–13

    Article  Google Scholar 

  • Medwin H, Clay SC (1998) Fundamentals of acoustical oceanography. Academic Press, San Diego, p 712

    Google Scholar 

  • Merewether R, Olsson MS, Lonsdale P (1985) Acoustically detected hydrocarbon plumes rising from 2-km Depths in Guaymas Basin, Gulf of California. J Geophys Res 90:3075–3085. doi:10.1029/JB090iB04p03075

    Article  Google Scholar 

  • Mienert J, Bünz S, Guidard S, Vanneste M, Berndt C (2005) Ocean bottom seismometer investigations in the Ormen Lange area offshore mid-Norway provide evidence for shallow gas layers in subsurface sediments. Mar Pet Geol 22(1–2):287–297. doi:10.1016/j.marpetgeo.2004.10.020

    Article  Google Scholar 

  • Nikolovska A, Sahling H, Bohrmann G (2008) Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea. Geochem Geophys Geosyst 9(10). doi:10.1029/2008GC002118

  • Obzhirov A, Shakirov R, Salyuk A, Suess E, Biebow M, Salomatin A (2004) Relations between methane venting, geological structure and seismo-tectonics in the Okhotsk Sea. Geo Mar Lett 24:135–139

    Article  Google Scholar 

  • Ostrovsky I, Mcginnis D, Lapidus L, Eckert W (2008) Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnol Oceanogr Methods 6:105–118

    Article  Google Scholar 

  • Rangin C, Demirbag E, Imren C, Crusson A, Normand A, Le Drezen E, Le Bot A (2001) Marine atlas of the Sea of Marmara (Turkey). Ifremer, Plouzané. ISBN 2-84433-068-1

    Google Scholar 

  • Sauter EJ, Muyakshin SI, Charlou J-L, Schluter M, Boetius A, Jerosch K, Damm E, Foucher J-P, Klages M (2006) Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet Sci Lett 243:354–365

    Article  Google Scholar 

  • Schneider von Deimling JS, Brockhoff J, Greinert J (2007) Flare imaging with multibeam systems: data processing for bubble detection at seeps. Geochem Geophy Geosyst 8(6). doi:10.1029/2007GC001577

  • Schneider von Deimling J, Papenberg C (2012) Technical note: detection of gas bubble leakage via correlation of water column multibeam images. Ocean Sci 8(2):175–181

    Article  Google Scholar 

  • Schneider von Deimling J, Greinert J, Chapman NR, Rabbel W, Linke P (2010) Acoustic imaging of natural gas seepage in the North Sea: sensing bubbles controlled by variable currents. Limnol Oceanogr Methods 8:155–171

    Article  Google Scholar 

  • Schneider von Deimling J, Rehder G, Greinert J, McGinnnis DF, Boetius A, Linke P (2011) Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Cont Shelf Res 31:867–878

    Article  Google Scholar 

  • Şengör AMC, Tüysüz O, Imren C, Sakinç M, Eydogan H, Görür N, Le Pichon X, Rangin C (2005) The North Anatolian Fault: a New Look. Annu Rev Earth Planet Sci 33:37–112. doi:10.1146/annurev.earth.32.101802.120415

    Article  Google Scholar 

  • Sills GC, Wheelers SJ, Thomas SD, Gardner ND (1991) The behaviour of offshore soils containing gas bubble. Geotechnique 41:227–242

    Article  Google Scholar 

  • Simmonds J, MacLennan DN (2005) Fisheries Acoustics. Blackwell Publishing, London

    Book  Google Scholar 

  • Stanton TK (1989) Simple approximate formulas for backscattering of sound by spherical and elongated objects. J Acoust Soc Am 86(4):1499

    Article  Google Scholar 

  • Tary J-B (2011) Relations entre fluides et sismicité dans le domaine sous-marin à partir de sismographes de fond de mer : étude de cas en Mer de Marmara et Application au Delta du Niger.PhD theseis, Ifremer, Brest

  • Tary J-B, Géli L, Guennou G, Henry P, Sultan N, Cagatay N, Vidal V (2012) Microevents produced by gas migration and expulsion at the seabed: a study based on sea bottom recordings from the Sea of Marmara. Geophys J Int. doi:10.1111/j.1365-246X.2012.05533.x

    Google Scholar 

  • Tryon MD, Brown KM, Torres ME (2002) Fluid and chemical flux in and out of the sediments, hosting methane hydrate deposits on Hydrate Ridge, OR, II: hydrological processes. Earth Planet Sci Lett 201:541–557

    Article  Google Scholar 

  • Westbrook G K et al (2009) Escape of methane gas from the seabed along the West Spitsbergen continental margin.Geophys Res Lett. doi:10.1029/2009GL039191

  • Westbrook GK, Chand S, Rossi G, Long C, Bünz S, Camerlenghi A, Carcione JM, Dean S, Foucher J-P, Flueh ER, Gei D, Hacke R, Madrussani G, Mienert J, Minshull TA, Nouzé H, Peacock S, Reston TJ, Vanneste M, Zillmer M (2008) Estimation of hydrate concentration from multi-component seismic data at sites in the continental margins of NW Svalbard and the Storegga region of Norway. Mar Pet Geol 25:744–758

    Article  Google Scholar 

  • Wever TF, Lühder R, Voß H, Knispel U (2006) Potential environmental control of free shallow gas in the seafloor of Eckernförde Bay, Germany. Mar Geol 225:1–4. doi:10.1016/j.margeo.2005.08.005

    Article  Google Scholar 

  • Wheeler SJ, Gardiner TN (1989) Elastic moduli of soils containing large gas bubbles. Geotechnique 39(2):333–342

    Article  Google Scholar 

  • Yüce H (1993) Analysis of the water level variations in the EasternBlack Sea. J Coast Res 9(4):1075–1082

    Google Scholar 

  • Zitter TAC, Henry P, Aloisi G, Delaygue G, Çagatay MN, Mercier de Lepinay B, Al-Samir M, Fornacciari F, Tesmer M, Pekdeger A, Wallmann K, Lericolais G (2008) Cold seeps along the main Marmara Fault in the Sea of Marmara (Turkey). Deep Sea Res Part I 55:552

    Article  Google Scholar 

Download references

Acknowledgments

The data used in this paper was collected within the MARMARA-DM Demonstration mission of the ESONET (European Seas Observatory NETwork) NoE supported by the 7th Framework Programme (FP7) of the EU. The specific study on BOB results presented here was funded by TOTAL. The Istanbul Technical University (ITU) provided long-term, valuable support for the operations at sea in 2009, and R/V Yunus for the deployment and recovery of BOB in 2011. The Turkish Navy provided special assistance that largely contributed to the success of the Marmesonet cruise of R/V Le Suroît in 2009 in the Sea of Marmara. Special acknowledgement to: Captain and crew of IFREMER/GENAVIR of R/V Le Suroît for their efforts during the Marmesonet cruise; Ronan Apprioual and Pascal Pelleau (IFREMER); Roger Galou (Altran); Namik Cagatay (ITU) and Pierre Henry (Cerege). Careful reviews by the two anonymous reviewers resulted in considerable improvement to an earlier version of this manuscript. We are particularly indebted to Jens Greinert, the reviewers and to the editor for their judicious insightful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaye Bayrakci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayrakci, G., Scalabrin, C., Dupré, S. et al. Acoustic monitoring of gas emissions from the seafloor. Part II: a case study from the Sea of Marmara. Mar Geophys Res 35, 211–229 (2014). https://doi.org/10.1007/s11001-014-9227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-014-9227-7

Keywords

Navigation