Skip to main content

Advertisement

Log in

Tectonic implications of spatial variation of b-values and heat flow in the Aegean region

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

The Aegean region is tectonically a complex area characterized mainly by the subduction of African oceanic lithosphere beneath the Aegean continental lithosphere including extensional subbasins and mantle driven block rotations. In this study, spatial distribution of earthquakes, b-value distribution, and heat flow data have been analyzed to reveal the deep structural features of the Aegean region. b-value distributions show two low NE–SW and NW–SE trending b-anomaly zones in the western and eastern side of the Crete, implying slab tear within the Aegean slab. Earthquake foci distribution indicates that the Aegean slab steepens in the eastern side of the Crete, compared to its western side. Earthquake foci reach maximum depth of 180 km along the Cycladic arc axis, suggesting northward subducted slab geometry. The low seismic activities and high b-value anomalies within Aegean basin, except North Aegean Trough, can be compared to higher heat flow. We concluded that collision-induced westward mantle flow beneath Turkey followed by hard collision between Arabian-Eurasian continental plates played a major role in the evolution of clockwise rotational retreat of the Aegean slab and slab steepening to the east of the Crete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agostini S, Doglioni C, Innocenti F, Manetti P, Tonarini S, Savasçın MY (2007) The transition from subduction-related to intraplate Neogene magmatism in the Western Anatolia and Aegean area. In: Beccaluva L, Bianchini G, and Wilson M (Eds), Cenozoic Volcanism in the Mediterranean Area, Geological Society of America Special Paper 418: 1–16

  • Agostini S, Doglioni C, Innocenti F, Manetti P, Tonarini S (2010) On the geodynamics of the Aegean rift. Tectonophysics 488:7–21

    Article  Google Scholar 

  • Aki K (1965) Maximum likelihood estimate of b in the formula log (N) = a − bM and its confidence limits, Bull Earthq Res Inst, Tokyo Univ. 43: 237–239

    Google Scholar 

  • Allen CR, Amand P, Richter CF, Nordquist JM (1965) Relation between seismicity and geological structure in the Southern California region. Bull Seismol Soc Am 55:752–797

    Google Scholar 

  • Armijo R, Meyer A, King GCP, Rigo A, Papanastassiou D (1996) Quaternary evolution of the Corith Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys J Int 126:11–53

    Article  Google Scholar 

  • Aydogan D, Elmas A, Albora AM, Ucan ON (2005) A new approach to the structural features of the Aegean Sea: cellular neural network. Mar Geophys Res 26:1–15

    Article  Google Scholar 

  • Bender B (1983) Maximum likelihood estimation of B values for magnitude grouped data. Bull Seismol Soc Am 73:831–851

    Google Scholar 

  • Bott MHP (1982) The interior of the earth: its structure constitution and evolution. Edward Arnold, London, p 316

    Google Scholar 

  • Brun JP, Sokoutis D (2005) Crust and mantle flow during 50 Ma of Aegean Extension. Geophys Res Abs 7:02265

    Google Scholar 

  • Burton PW (1979) Seismic risk in southern Europe through India examined Gumbel’s third distribution of extreme values. Geophys J R Astr Soc 59:249–280

    Article  Google Scholar 

  • Chan LS, Chandler AM (2001) Spatial bias in b-value of the frequency-magnitude relation for the Hong Kong region. J Asian Earth Sci 20:73–81

    Article  Google Scholar 

  • Cianetti S, Gasperini P, Giunchi C, Boschi E (2001) Numerical modelling of the Aegean–Anatolian region: geodynamical constraints from observed rheological heterogeneities. Geophys J Int 146:760–780

    Article  Google Scholar 

  • Dewey JF (1988) Extensional collapse of orogens. Tectonics 7:1123–1139

    Article  Google Scholar 

  • Dewey JF, Sengor AMC (1979) Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geol Soc Am Bull 90:84–92

    Article  Google Scholar 

  • Dewey JF, Helman ML, Turco E, Hutton DHW, Knott SD (1989) Kinematics of the western Mediterranean. In: Coward MP, Dietrich D, Park RG (eds) Alpine Tectonics. Geological Society. Special Publication, London, pp 265–283

    Google Scholar 

  • Dolmaz MN, Ustaömer T, Hisarlı ZM, Orbay N (2005) Curie point depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Planet Spa. 57(5):373–383

    Google Scholar 

  • Dologlou E, Hadjicontis V, Mavromatou C (2008) Electrical precursors of earthquakes in Aegean Sea during the last decade (1997–2007). Nat Hazards Earth Syst Sci 8:123–128

    Article  Google Scholar 

  • Doutsos T, Kokkalas S (2001) The central Aegean domain has been undergoing extension accommodated by WNW- and NE-trending faults since the Late Miocene. Stress and deformation patterns in the Aegean region. J Struct Geol 23:455–472

    Article  Google Scholar 

  • Duermeijer CE, Nyst M, Meijer PT, Langereis CG, Spakman W (2000) Neogene evolution of the Aegean arc: paleomagnetic and geodetic evidence for a rapid and young rotation phase, Earth Planet. Sci Lett 176:509–525

    Google Scholar 

  • Erickson AJ, Simmons MG, Ryan WBF (1976) Review of Heat Flow from the Mediterranean and Aegean Seas, in Int. Symp. on the Strut. Hist. of the Medit. Basin, Split, Yugoslavia ~ Oct. 1976, Proc., pp. 263–280 (ed by Biju-Duval B and Montadert L)

  • Evangelidis CP, Liang WT, Melis NS, Konstantinou KI (2011) Shear wave anisotropy beneath the Aegean inferred from SKS splitting observations, J Geophys Res 116: doi:10.1029/2010JB007884

  • Fytikas MD (1980) Geothermal exploitation in Greece. 2 nd Int. Sem on the results of E.C. Geothermal Energy Research, Strasbourgh. (eds) Strub AS ve Ungemach P, 213–237, Reidel Publ., Dordrecht

  • Fytikas MD, Kolios NP (1978) Preliminary heatflow map of Greece, In Terrestial Heat Flow in Europe (Cermak and Ryback, eds.) pp 270

  • Fytikas MD, Innocenti F, Manetti P, Mazzuoli R, Peccerillo A, Villari L (1985) Tertiary to Quaternary evolution of volcanism in the Aegean region, The Geological Evolution of the Eastern Mediterranean. Special Publ Geol Soc 17:687–699

    Article  Google Scholar 

  • Gautier P, Brun JP, Moriceau R, Sokoutis D, Martinod J, Jolivet L (1999) Timing, kinematics and case of Aegean extension: a scenario based on a comprasion with simple analogue experiments. Tectonophysics 315:31–72

    Article  Google Scholar 

  • Georgalas GC (1962) Active volcanoes in the world including solfatara fields. Intern Volcan Assoc 12:1–40

    Google Scholar 

  • Gutenberg R, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Hatzfeld D (1999) The present-day tectonics of the Aegean as deduced from seismicity in the Mediterranean basins, In: Durand B et al (Eds), Tertiary extension within the Alpine orogeny, Geol Soc Lond Spec Publ 156: 415–426

  • Hatzidimitriou PM, Papadimitriou EE, Mountrakis DM, Papazachos BC (1985) The seismic parameter b of the frequency-magnitude relation and its association with the geological zones in the area of Greece. Tectonophysics 120:141–151

    Article  Google Scholar 

  • Huang J, Turcotte R (1988) Fractal distributions of stress and strength and variations of b-value. Earth Planet Lett 91:223–230

    Article  Google Scholar 

  • Hurtig E, Cermak V, Haenel R, Zui V (1991) Geothermal Atlas of Europe. H. Haack Verlagsgesellschaft, Gotha

    Google Scholar 

  • Ilkisik OM (1995) Regional heat flow in western Anatolia using silica temperature estimates from thermal springs. Tectonophysics 244:175–184

    Article  Google Scholar 

  • Ishimoto M, Iida K (1939) Observations of earthquakes registered with the microseismograph constructed recently. Bull Earthq Res Inst 17:443–478

    Google Scholar 

  • Jackson JA (1994) Active tectonics of the Aegean Region. Ann Rev Planet Sci 22:239–271

    Article  Google Scholar 

  • Jongsma D (1974) Heat flow in the Aegean Sea. Geophys J Int 37(3):337–346

    Article  Google Scholar 

  • Kalyoncuoglu UY (2007) Evaluation of seismicity and seismic hazard parameters in Turkey and surrounding area using a new approach to the Gutenberg–Richter relation. J Seismolog 11:131–148

    Article  Google Scholar 

  • Kalyoncuoglu UY, Elitok O, Dolmaz MN, Anadolu NC (2011) Geophysical and geological imprints of southern Neotethyan subduction between Cyprus and the Isparta Angle, SW Turkey. J Geodyn 52:70–82

    Article  Google Scholar 

  • Karagianni EE, Papazachos CB (2007) Shear velocity structure in the Aegean region obtained by joint inversion of Rayleigh and Love waves, in The Geodynamics of the Aegean and Anatolia, Vol. 291, pp. 159–181, (eds Taymaz T, Yilmaz Y, Dilek Y) Geol Soc Spec Pub, London

  • Katsumata K (2006) Imaging the high b-value anomalies within the subducting Pacific plate in the Hokkaido corner. Earth Planet Spa 58:49–52

    Google Scholar 

  • Kijko A, Sellevol MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seism Soc Am 79:645–654

    Google Scholar 

  • Kijko A, Sellevol MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82:120–134

    Google Scholar 

  • Kiratzi A, Louvari E (2003) Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database. J Geodyn 36:251–274

    Article  Google Scholar 

  • Kiratzi A, Wagner G, Langston C (1991) Source parameters of some large earthquakes in Northern Aegean determined by body waveform modeling. Pageoph 135:515–527

    Article  Google Scholar 

  • Koukouvelas I, Aydin A (2002) Fault structure and related basins of the North Aegean Sea and its surroundings. Tectonics 21:1–17

    Article  Google Scholar 

  • Lapenna V, Macchiato M, Telesca L (1998) Fluctuations and self similarity in earthquake dynamics; observational evidences in southern Italy. Phys Earth Planet Int 106:115–127

    Article  Google Scholar 

  • Le Pichon X, Angelier J (1979) The Hellenic arc trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42

    Article  Google Scholar 

  • Le Pichon X, Angelier J (1981) The Aegean Sea. Phil Trans R Soc Lond 300:357–372

    Article  Google Scholar 

  • Main IG, Meredith PG, Sammonds PR (1992) Temporal variations in seismic event rate and b-values from stress corrosion constitutive laws. Tectonophysics 211:233–246

    Article  Google Scholar 

  • Manakou MV, Tsapanos TM (2000) Seismicity and seismic hazard parameters evaluation in the island of Crete and surrounding area inferred from mixed data files. Tectonophysics 321:157–178

    Article  Google Scholar 

  • McClusky S, Balassanian S, Barka AA, Demir C, Engintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidse G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Teableb A, Toksoz N, Veis G (2000) Global Positioning System contraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719

    Google Scholar 

  • McKenzie DP (1972) Active tectonics of the Mediterranean Region. Geophys J R Astr Soc 30:109–185

    Article  Google Scholar 

  • Miyamura S (1962) Magnitude-Frequency relations and its bearing to geotectonics. Proc Jpn Acad 38:27–30

    Google Scholar 

  • Mogi K (1962) Magnitude-frequency relation for elastic shock accompanying fractures of various materials and some related problems in earthquakes. Bull Earthq Res Inst 40:831

    Google Scholar 

  • Mogi K (1967) Earthquakes and fractures. Tectonophysics 5:35–55

    Article  Google Scholar 

  • Mori J, Abercrombie RE (1997) Depth dependence of earthquake frequency-magnitude distributions in California: implications for the rupture initiation. J Geophys Res 102:15081–15090

    Article  Google Scholar 

  • Nanjo K, Nagahama H, Satomura M (1998) Rates of aftershock decay and the fractal structure of active fault systems. Tectonophysics 287:173–186

    Article  Google Scholar 

  • Olsson R (1999) An estimation of maximum b-value in the Gutenberg–Richter relation. J Geodyn 27:547–552

    Article  Google Scholar 

  • Öncel AO, Wilson T (2004) Correlation of seismotectonic variables and GPS strain measurements in western Turkey. J Geophys Res Am Geophys Union 109:B11306 (13 pages)

    Article  Google Scholar 

  • Öncel AO, Wilson T (2006) Evaluation of earthquake potential along the Northern Anatolian Fault Zone in the Marmara Sea using comparisons of GPS strain and seismotectonic parameters. Tectonophysics 418:205–218

    Article  Google Scholar 

  • Öncel AO, Main I, Alptekin Ö, Cowie P (1996) Spatial variations of the fractal properties of seismicity in the Anatolian fault zone. Tectonophysics 257:189–202

    Article  Google Scholar 

  • Oxburgh ER, Turcotte DL (1971) Origin of paired metamorphic belts and crustal dislocation in Island arc regions. J Geophys Res 76:1315–1327

    Article  Google Scholar 

  • Page R (1968) Aftershocks and micro-aftershocks of the Great Alaska earthquake of 1964. Bull Seismol Soc Am 58:1131–1168

    Google Scholar 

  • Papazachos BC (1974) Dependence of the seismic parameter b on the magnitude range. Pure Appl Geophys 112:1059–1065

    Article  Google Scholar 

  • Papazachos BC (1999) An alternative method for a reliable estimation of seismicity with an application in Greece and the surrounding area. Bull Seismol Soc Am 89:111–119

    Google Scholar 

  • Papazachos BC, Comninakis PE (1971) Geophysical and tectonic features of the Aegean arc. J Geophys Res 76:8517–8533

    Article  Google Scholar 

  • Papazachos BC, Kiratzi AA (1996) A detailed study of active crustal in the Aegean and surrounding region. Tectonophysics 253:129–153

    Article  Google Scholar 

  • Papazachos BC, Kiratzi AA, Hatzidimitriou PM, Rocca AC (1984) Seismic faults in the Aegean area. Tectonophysics 106:71–85

    Article  Google Scholar 

  • Papazachos BC, Papadimitriou EE, Kiratzi AA, Papazachos CB, Louvari EK (1998) Fault plane solutions in the Aegean Sea and the surrounding area and their tectonic implications. Bolletino di Geofisica Teorica ed Applicata 39:199–218

    Google Scholar 

  • Piper DJW, Perissoratis C (2003) Quaternary neotectonics of the South Aegean arc. Mar Geol 198:259–288

    Article  Google Scholar 

  • Pollack HN, Hunter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280

    Article  Google Scholar 

  • Reilinger R, McClusky S, Paradissis D, Ergintav S, Vernant P (2010) Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics 488:22–30

    Article  Google Scholar 

  • Robertson AHF, Grasso M (1995) Overview of the late tertiary recent tectonic and palaeo- environmental development of the Mediterranean Region. Terra Nova 7:114–127

    Article  Google Scholar 

  • Scholz CH (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variation in earthquake-size distribution across different stress regimes. Nature 437:539–542

    Article  Google Scholar 

  • Scordilis EM (2006) Empirical global relations converting Ms and Mb to moment magnitude. J Seismol 10:225–236

    Article  Google Scholar 

  • Shi Y, Bolt BA (1982) The standard error of the magnitude-frequency b-value. Bull Seismol Soc Am 72:1677–1687

    Google Scholar 

  • Spakman W, Wortel MJR, Vlaar NJ (1988) The Hellenic subduction zone: a tomographic image and its geodynamic implications. Geophys Res Lett 15:60–63

    Article  Google Scholar 

  • Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470

    Article  Google Scholar 

  • Taymaz T, Jackson JA, Mckenzie D (1991) Active tectonics of the North and Central Aegean Sea. Geophys J Intern 106:433–490

    Article  Google Scholar 

  • Tezcan AK (1979) Geothermal studies, their present status and contribution to heat flow contouring in Turkey. Čermak V ve Rybach L (eds), Terrestrial heat flow in Europe, 283–291. Springer Verlag, Berlin

  • Tezcan AK, Turgay I (1989) Heat Flow map of Turkey, MTA General Directorate, Department of Geophysics, Ankara (Unpublished document in Turkish)

  • Tsapanos TM (1990) b-Values of two tectonic parts in the circum-Pasific belt. Pure Appl Geophys 134:229–242

    Article  Google Scholar 

  • Tsapanos TM, Galanopoulos DG, Burton PW (1994) Seismicity in the Hellenic volcanic arc: relation between seismic parameters and the geophysical fields in the region. Geophys J Intern 117:677–694

    Article  Google Scholar 

  • Tselentis GA (1991) An attempt to define Curie point depths in Greece from Aeromagnetic and heat flow data. Pure Appl Geophys 136:87–101

    Article  Google Scholar 

  • Tsokas GN, Hansen RO, Fytikas M (1998) Curie point depth of the island of Crete (Greece). Pure and App Geophy 152:747–757

    Article  Google Scholar 

  • Urbanic TI, Trifu CI, Long JM, Toung RP (1992) Space-time correlations of b values with stress release. Pure Appl Geophys 139:449–462

    Article  Google Scholar 

  • Utsu T (1965) A Method for determining the value of b in a formula log N = a-bM showing the magnitude-frequency relation for earthquakes. Geophys Bull Hokkaido Univ 13:99–103

    Google Scholar 

  • Van Hinsbergen DJJ, Snel E, Garstman SA, Marunteanu M, Langereis CG, Wortel MJR, Meulenkamp JE (2004) Vertical motions in the Aegean volcanic arc: evidence for rapid subsidence preceding volcanic activity on Milos and Aegina. Mar Geol 209:329–345

    Article  Google Scholar 

  • Van Hinsbergen DJJ, Kaymakci N, Spakman W, Torsvik TH (2010) Reconciling the geological history of western Turkey with plate circuits and mantle tomography. Earth Planet Sci Lett 297:674–686

    Article  Google Scholar 

  • Walcott CR, White SH (1998) Constraints on the kinematics of post-orogenic extension imposed by stretching lineations in the Aegean region. Tectonophysics 298:155–175

    Article  Google Scholar 

  • Wang JH (1988) b-values of shallow earthquakes in Taiwan. Bull Seismol Soc Am 78:1243–1254

    Google Scholar 

  • Warren NW, Latham GV (1970) An experimental study of thermally induced microfracturing and its relation to volcanic seismicity. J Geophys Res 75:4455–4464

    Article  Google Scholar 

  • Wiemer S, Baer M (2000) Mapping and removing quarry blast events from seis- micity catalogs. Bull Seismol Soc Am 90:525–530

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States and Japan. Bull Seismol Soc Am 90:859–869

    Article  Google Scholar 

  • Wiemer S, Mcnutt SR, Wyss M (1998) Temporal and three dimensional spatial analysis of the frequency–magnitude distributions near Long Valley Caldera California. Geophys J Int 134:409–421

    Article  Google Scholar 

  • Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J Royal Astron Soc 31:341–359

    Article  Google Scholar 

  • Wyss M, Schorlemmer D, Wiemer S (2000) Mapping asperities by minima of local recurrence time: San Jacinto-Elsinore Fault Zones. J Geophys Res 105:7829–7844

    Article  Google Scholar 

  • Zuniga R, Wyss M (2001) Most- and least-likely locations of large to great earthquakes along the Pacific coast of Mexico estimated from local recurrence times based on b-values. Bull Seism Soc Am 91:1717–1728

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the two anonymous reviewers for their helpful and constructive comments in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Yalcin Kalyoncuoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyoncuoglu, U.Y., Elitok, Ö. & Dolmaz, M.N. Tectonic implications of spatial variation of b-values and heat flow in the Aegean region. Mar Geophys Res 34, 59–78 (2013). https://doi.org/10.1007/s11001-013-9174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11001-013-9174-8

Keywords

Navigation