Skip to main content
Log in

Co-rotational formulation for dynamic analysis of space membranes based on triangular elements

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Nonlinear triangular space membrane elements are developed for the analysis of thin structures subjected to dynamic loading. By using a co-rotated framework, displacements are decomposed into rigid body motions and pure deformational displacements. The novelty of the formulation is that it employs the co-rotated framework to derive tangent dynamic matrix and an inertial force vector. Closed forms for the inertia force vector, the tangent dynamic matrix, the mass matrix and the gyroscopic matrix are derived directly from the current coordinate transformation matrix. Three numerical examples are presented to illustrate the robustness and efficiency of the new co-rotational formulation. The efficiency of the proposed approach is compared to the updated Lagrangian method, and savings in computation of up to 50 %, were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Version 7.4, the MathWorks, Inc., Natick, USA.

References

  • Alsafadie, R., Hjiaj, M., Battini, J.M.: Co-rotational mixed finite element formulation for thin-walled beams with generic cross-section. Comput. Meth. Appl. Mech. Eng. 199, 3197–3212 (2010)

    Article  MATH  Google Scholar 

  • Bathe, K.J.: Finite element formulation for large deformations dynamic analysis. Int. J. Numer. Methods Eng. 9, 353–368 (1975)

    Article  MATH  Google Scholar 

  • Battini, J.M., Pacoste, C.: On the choice of local element frame for co-rotational triangular shell elements. Commun. Numer. Methods Eng. 20, 819–825 (2004)

    Article  MATH  Google Scholar 

  • Battini, J.M.: A modified co-rotational framework for triangular shell elements. Comput. Methods Appl. Mech. Eng. 196, 1905–1914 (2007)

    Article  MATH  Google Scholar 

  • Battini, J.M.: A non-linear co-rotational 4-node plane element. Mech. Res. Commun. 35, 408–413 (2008)

    Article  MATH  Google Scholar 

  • Behdinan, K., Stylianou, M.C., Tabarrok, B.: Co-rotational dynamic analysis of flexible beams. Comput. Methods Appl. Mech. Eng. 154, 151–161 (1998)

    Article  MATH  Google Scholar 

  • Belytschko, T., Hsieh, B.J.: Non-linear transient finite element analysis with convected co-ordinates. Int. J. Numer. Methods Eng. 7, 255–271 (1973)

    Article  MATH  Google Scholar 

  • Benney, R.J.: A nonlinear dynamic sphereical membrane model. U.S. Army Natick Research, Development and Engineering Center. Natick Technical Report No. NATICK/TR-93/017 (1993)

  • Berry, D.T., Yang, H.T.Y.: Formulation and experimental verification of a pneumatic finite element. Int. J. Numer. Methods Eng. 39, 1097–1114 (1996)

    Article  MATH  Google Scholar 

  • Bonet, J., Wood, R.D., Mahaney, J., Heywood, P.: Finite element analysis of air supported membrane structures. Comput. Methods Appl. Mech. Eng. 190, 579–595 (2000)

    Article  MATH  Google Scholar 

  • Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)

    Article  MATH  Google Scholar 

  • Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn, pp. 447–465. Wiley, Chischester (1997)

    Google Scholar 

  • Crisfield, M.A., Galvanetto, U., Jeleni´c, G.: Dynamics of 3-D co-rotational beams. Comput. Mech. 20, 507–519 (1997)

    Article  MATH  Google Scholar 

  • Eriksson, A., Nordmark, A.: Instability of hyper-elastic balloon-shaped space membranes under pressure loads. Comput. Methods Appl. Mech. Eng. 237, 118–129 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Eriksson, A., Faroughi, S.: Quasi-static inflation simulations based on co-rotational triangular space membrane elements. Int. J. Struct. Stab. Dyn. 13, 2560–2581 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Eriksson, A., Pacoste, C.: Element formulation and numerical techniques for stability problems in shells. Comput. Methods Appl. Mech. Eng. 191, 3775–3810 (2002)

    Article  MATH  Google Scholar 

  • Faroughi, S., Khodaparast, H.H., Friswell, M.I.: Non-linear dynamic analysis of tensegrity structures using a co-rotational method. Int. J. Non-linear Mech. 69, 55–65 (2015)

    Article  Google Scholar 

  • Felippa, C.A., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. Theory. Comput. Methods Appl. Mech. Eng. 194, 2285–2335 (2005)

    Article  MATH  Google Scholar 

  • Fraeijs De Veubeke, B.: The dynamics of flexible bodies. Int. J. Eng. Sci. 14, 895–913 (1976)

    Article  MATH  Google Scholar 

  • Gosling, P.D., Lewis, W.J.: Optimal structural membranes—I. Formulation of a curved quadrilateral element for surface definition. Comput. Struct. 61, 871–883 (1996)

    Article  MATH  Google Scholar 

  • Hampshire, J.K., Topping, B.H.V., Chan, H.C.: Three node triangular bending elements with one degree of freedom per node. Eng. Comput. 9, 49–62 (1992)

    Article  Google Scholar 

  • Hsiao, K.M., Lin, J.Y., Lin, W.Y.: A consistent co-rotational finite element formulation for geometrically nonlinear dynamics analysis of 3-D beams. Comput. Methods Appl. Mech. Eng. 169, 1–18 (1999)

    Article  MATH  Google Scholar 

  • Kugler, S., Fotiu, P., Murin, J.: A highly efficient membrane finite element with drilling degrees of freedom. Acta Mech. 213, 323–348 (2010)

    Article  MATH  Google Scholar 

  • Le, T.N., Battini, J.M., Hjiaj, M.: Efficient formulation for dynamics of co-rotational 2D beams. Comput. Mech. 48, 153–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Le, T.N., Battini, J.M., Hjiaj, M.: A consistent 3D co-rotational beam element for nonlinear dynamic analysis of flexible structures. Comput. Methods Appl. Mech. Eng. 269, 538–565 (2014)

    Article  MATH  Google Scholar 

  • Li, Z.X., Liu, Y.F., Izzuddin, B.A., Vu-Quoc, L.: A stabilized co-rotational curved quadrilateral composite shell element. Int. J. Numer. Methods Eng. 86, 975–999 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Madeo, A., Zagari, G., Casciaro, R.: An isostatic quadrilateral membrane finite element with drilling rotations and no spurious modes. Finite Elem. Anal. Des. 50, 21–32 (2012)

    Article  Google Scholar 

  • Needleman, A.: Inflation of spherical rubber balloons. Int. J. Solid Struct. 13, 409–421 (1977)

    Article  Google Scholar 

  • Oñate, E., Cervera, M.: Derivation of thin plate bending elements with one degree of freedom per node: a simple three node triangle. Eng. Comput. 10, 543–561 (1993)

    Article  Google Scholar 

  • Phaal, R., Calladine, C.R.: Simple class of finite elements for plate and shell problems. II: An element for thin shells, with only translational degrees of freedom. Int. J. Numer. Methods Eng. 35, 979–996 (1992)

    Article  MATH  Google Scholar 

  • Prezimenskii, S.: Theory of Matrix Structural Analysis. Mc-Graw Hill, New York (1985)

    Google Scholar 

  • Rankin, C.C.: On choice of best possible corotational element frame. In: Atluri, S.N., O’Donoghue, P.E. (eds.) Modeling and Simulation Based Engineering, pp. 772–777. Tech Science Press, Palmdale (1998)

    Google Scholar 

  • Wempner, G.: Finite elements, finite rotations and small strains of flexible shells. Int. J. Solid Struct. 5, 117–153 (1969)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirko Faroughi.

Appendix

Appendix

By the definitions (see Eqs. 21-a to 21-c), the terms of the optimum coordinate transformation matrix \({\mathbf{R}}^{\text{r}}\) obtained from global displacement and positions as:

$$\begin{aligned} \varvec{e}_{1} & = \left\{ {\begin{array}{c} {c_{1} } \\ {c_{2} } \\ {c_{3} } \\ \end{array} } \right\};c_{1} = \frac{{x_{j} + u_{j} - x_{i} - u_{i} }}{{l_{ij} }};c_{2} = \frac{{y_{j} + v_{j} - y_{i} - v_{i} }}{{l_{ij} }};c_{3} = \frac{{z_{j} + w_{j} - z_{i} - w_{i} }}{{l_{ij} }} \\ l_{ij} & = \sqrt {\left( {x_{j} + u_{j} - x_{i} - u_{i} } \right)^{2} + \left( {y_{j} + v_{j} - y_{i} - v_{i} } \right)^{2} + \left( {z_{j} + w_{j} - z_{i} - w_{i} } \right)^{2} } \\ \end{aligned}$$
(39)
$$\begin{aligned} \varvec{e}_{3} & = \frac{{\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} }}{{\left\| {\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} } \right\|}} = \left\{ {\begin{array}{c} {c_{7} } \\ {c_{8} } \\ {c_{9} } \\ \end{array} } \right\}; \\ c_{7} & = \frac{{\left( {y_{j} + v_{j} - y_{i} - v_{i} } \right)\left( {z_{k} + w_{k} - z_{i} - w_{i} } \right) - \left( {y_{k} + v_{k} - y_{i} - v_{i} } \right)\left( {z_{j} + w_{j} - z_{i} - w_{i} } \right)}}{{\left\| {\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} } \right\|}} = \frac{A}{{\left\| {\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} } \right\|}}; \\ c_{8} & = \frac{{\left( {z_{j} + w_{j} - z_{i} - w_{i} } \right)\left( {x_{k} + u_{k} - x_{i} - u_{i} } \right) - \left( {x_{j} + u_{j} - x_{i} - u_{i} } \right)\left( {z_{k} + w_{k} - z_{i} - w_{i} } \right)}}{{\left\| {\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} } \right\|}} = \frac{B}{{\left\| {\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} } \right\|}} \\ c_{9} & = \frac{{\left( {x_{j} + u_{j} - x_{i} - u_{i} } \right)\left( {y_{k} + v_{k} - y_{i} - v_{i} } \right) - \left( {x_{k} + u_{k} - x_{i} - u_{i} } \right)\left( {y_{j} + v_{j} - y_{i} - v_{i} } \right)}}{{\left\| {\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} } \right\|}} = \frac{C}{{\left\| {\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} } \right\|}} \\ l_{ijk} & = \left\| {\varvec{x}_{ij}^{g} \times \varvec{x}_{ik}^{g} } \right\| = \sqrt {A^{2} + B^{2} + C^{2} } \\ \end{aligned}$$
(40)
$$\begin{aligned} \varvec{e}_{2} & = \varvec{e}_{3} \times \varvec{e}_{1} = \left\{ {\begin{array}{c} {c_{4} } \\ {c_{5} } \\ {c_{6} } \\ \end{array} } \right\} \\ c_{4} & = c_{3} c_{8} - c_{2} c_{9} ;\,\,c_{5} = c_{1} c_{9} - c_{3} c_{7} ;\,\,c_{6} = c_{7} c_{2} - c_{8} c_{1} \\ \end{aligned}$$
(41)

where \(x_{\beta } ,y_{\beta } ,z_{\beta } ,\,\,\beta = i,j,k\) and \(u_{\beta } ,v_{\beta } ,z_{\beta } ,\,\,\,\beta = i,j,k\) are positions and displacements of nodes, respectively.

By the definitions (see Eq. 23), the terms of \(\varvec{t}_{\alpha } ,\,\alpha = 1,2, \cdots ,9\) obtained as:

$$\begin{aligned} \varvec{t}_{1} & = \frac{1}{{l_{ij} }}\left[ {\begin{array}{ccccccccc} {c_{1}^{2} - 1} & {c_{1} c_{2} } & {c_{1} c_{3} } & {1 - c_{1}^{2} } & { - c_{1} c_{2} } & { - c_{1} c_{3} } & 0 & 0 & 0 \\ \end{array} } \right]^{T} \\ \varvec{t}_{2} & = \frac{1}{{l_{ij} }}\left[ \begin{array}{ccccccccc} {c_{1} c_{2} } & {c_{2}^{2} - 1} & {c_{2} c_{3} } & { - c_{1} c_{2} } & {1 - c_{2}^{2} } & - c_{2} c_{3} & 0 & 0 & 0 \end{array} \right]^{T} \\ \varvec{t}_{3} & = \frac{1}{{l_{ij} }}\left[ \begin{array}{ccccccccc} {c_{1} c_{3} } & {c_{2} c_{3} } & {c_{3}^{2} - 1} & { - c_{1} c_{3} } & { - c_{2} c_{3} } & 1 - c_{3}^{2} & 0 & 0 & 0 \\ \end{array} \right]^{T} \\ \end{aligned}$$
(42)
$$\begin{aligned} \varvec{t}_{7} & = \frac{1}{{l_{ijk} }}\left( {\left[ {\begin{array}{ccccccccc} { - c_{7} c_{8} } & {1 - c_{7}^{2} } & {1 - c_{7}^{2} } & {c_{7} c_{8} } & {1 - c_{7}^{2} } & {c_{7}^{2} - 1} & { - c_{7} c_{8} } & {c_{7}^{2} - 1} & {1 - c_{7}^{2} } \\ \end{array} } \right]{\mathbf{D}}_{1} + \cdots } \right. \\ & \quad \left. {\left[ {\begin{array}{ccccccccc} { - c_{7} c_{9} } & { - c_{7} c_{9} } & {c_{7} c_{8} } & { - c_{7} c_{9} } & {c_{7} c_{9} } & { - c_{7} c_{8} } & {c_{7} c_{9} } & { - c_{7} c_{9} } & { - c_{7} c_{8} } \\ \end{array} } \right]{\mathbf{D}}_{2} } \right)\, \\ \varvec{t}_{8} & = \frac{1}{{l_{ijk} }}\left( {\left[ {\begin{array}{ccccccccc} {1 - c_{8}^{2} } & { - c_{7} c_{8} } & { - c_{7} c_{8} } & {c_{8}^{2} - 1} & { - c_{7} c_{8} } & {c_{7} c_{8} } & {c_{8}^{2} - 1} & {c_{7} c_{8} } & { - c_{7} c_{8} } \\ \end{array} } \right]{\mathbf{D}}_{1} + \cdots } \right. \\ & \quad \left. {\left[ {\begin{array}{ccccccccc} { - c_{8} c_{9} } & { - c_{8} c_{9} } & {1 - c_{8}^{2} } & { - c_{8} c_{9} } & {c_{9} c_{8} } & {1 - c_{8}^{2} } & {c_{8} c_{9} } & { - c_{8} c_{9} } & {1 - c_{8}^{2} } \\ \end{array} } \right]{\mathbf{D}}_{2} } \right) \\ \varvec{t}_{9} & = \frac{1}{{l_{ijk} }}\left( {\left[ {\begin{array}{ccccccccc} { - c_{8} c_{9} } & { - c_{7} c_{9} } & { - c_{7} c_{9} } & {c_{8} c_{9} } & { - c_{9} c_{8} } & {c_{9} c_{8} } & { - c_{8} c_{9} } & {c_{7} c_{9} } & { - c_{7} c_{9} } \\ \end{array} } \right]{\mathbf{D}}_{1} + \cdots } \right. \\ & \quad \left. {\left[ {\begin{array}{ccccccccc} {1 - c_{9}^{2} } & {1 - c_{9}^{2} } & { - c_{8} c_{9} } & {1 - c_{9}^{2} } & {c_{9}^{2} - 1} & { - c_{8} c_{9} } & {c_{9}^{2} - 1} & {c_{9}^{2} - 1} & { - c_{8} c_{9} } \\ \end{array} } \right]{\mathbf{D}}_{2} } \right) \\ \end{aligned}$$
(43)
$$\begin{aligned} {\mathbf{D}}_{1} & = {\text{diag}}\left( {\left( {z_{k} + w_{k} - z_{j} - w_{j} } \right),} \right.\left( {z_{i} + w_{i} - z_{k} - w_{k} } \right),\left( {y_{k} + v_{k} - y_{j} - v_{j} } \right),\left( {z_{k} + w_{k} - z_{i} - w_{i} } \right), \\ & \quad \left( {z_{k} + w_{k} - z_{i} - w_{i} } \right),\left. {\left( {y_{k} + v_{k} - y_{i} - v_{i} } \right)\,,\left( {z_{j} + w_{j} - z_{i} - w_{i} } \right),\left( {z_{j} + w_{j} - z_{i} - w_{i} } \right),\left( {y_{j} + v_{j} - y_{i} - v_{i} } \right)} \right) \\ {\mathbf{D}}_{2} & = {\text{diag}}\left( {\left( {y_{j} + v_{j} - y_{k} - v_{k} } \right),\left( {x_{k} + u_{k} - x_{j} - u_{j} } \right),\left( {x_{j} + u_{j} - x_{k} - u_{k} } \right),} \right.\left( {y_{k} + v_{k} - y_{i} - v_{i} } \right), \\ & \quad \left( {x_{k} + u_{k} - x_{i} - u_{i} } \right),\left. {\left( {x_{k} + u_{k} - x_{i} - u_{i} } \right),\left( {y_{j} + v_{j} - y_{i} - v_{i} } \right),\left( {x_{j} + u_{j} - x_{i} - u_{i} } \right),\left( {x_{j} + u_{j} - x_{i} - u_{i} } \right)} \right) \\ \end{aligned}$$
(44)
$$\begin{aligned} \varvec{t}_{4} & = c_{8} \varvec{t}_{3} + c_{3} \varvec{t}_{8} - c_{9} \varvec{t}_{2} - c_{2} \varvec{t}_{9} \\ \varvec{t}_{5} & = c_{9} \varvec{t}_{1} + c_{1} \varvec{t}_{9} - c_{9} \varvec{t}_{3} - c_{3} \varvec{t}_{7} \\ \varvec{t}_{6} & = c_{2} \varvec{t}_{7} + c_{7} \varvec{t}_{2} - c_{8} \varvec{t}_{1} - c_{1} \varvec{t}_{8} \\ \end{aligned}$$
(45)

By the definitions (see Eq. 25), the terms of \({\mathbf{R}}_{\alpha }\) which is evaluated from the \(c_{\alpha }\) coefficients obtained as:

$$\begin{aligned} {\mathbf{R}}_{1} & = \left[ {\begin{array}{ccc} 1 & 0 & 0 \\ {\frac{{ - c_{1} }}{{c_{2} }}} & {c_{9} } & 0 \\ {\frac{{ - c_{1} }}{{c_{3} }}} & { - c_{8} } & 0 \\ \end{array} } \right];\quad {\mathbf{R}}_{2} = \left[ {\begin{array}{ccc} {\frac{{ - c_{2} }}{{c_{1} }}} & { - c_{9} } & 0 \\ 1 & 0 & 0 \\ {\frac{{ - c_{2} }}{{c_{3} }}} & {c_{7} } & 0 \\ \end{array} } \right];\quad {\mathbf{R}}_{3} = \left[ {\begin{array}{ccc} {\frac{{ - c_{3} }}{{c_{1} }}} & {c_{8} } & 0 \\ {\frac{{ - c_{3} }}{{c_{2} }}} & { - c_{7} } & 0 \\ 1 & 0 & 0 \\ \end{array} } \right];\quad {\mathbf{R}}_{4} = \left[ {\begin{array}{ccc} 0 & 1 & 0 \\ 0 & {\frac{{ - c_{4} }}{{c_{5} }}} & 0 \\ 0 & {\frac{{ - c_{4} }}{{c_{6} }}} & 0 \\ \end{array} } \right] \\ {\mathbf{R}}_{5} & = \left[ {\begin{array}{ccc} 0 & {\frac{{ - c_{5} }}{{c_{4} }}} & 0 \\ 0 & 1 & 0 \\ 0 & {\frac{{ - c_{5} }}{{c_{6} }}} & 0 \\ \end{array} } \right];\quad {\mathbf{R}}_{6} = \left[ {\begin{array}{ccc} 0 & {\frac{{ - c_{6} }}{{c_{4} }}} & 0 \\ 0 & {\frac{{ - c_{6} }}{{c_{5} }}} & 0 \\ 0 & 1 & 0 \\ \end{array} } \right];\quad {\mathbf{R}}_{7} = \left[ {\begin{array}{ccc} 0 & 0 & 1 \\ 0 & { - c_{3} } & {\frac{{ - c_{7} }}{{c_{8} }}} \\ 0 & {c_{2} } & {\frac{{ - c_{7} }}{{c_{9} }}} \\ \end{array} } \right];\quad {\mathbf{R}}_{8} = \left[ {\begin{array}{ccc} 0 & {c_{3} } & {\frac{{ - c_{8} }}{{c_{7} }}} \\ 0 & 0 & 1 \\ 0 & { - c_{1} } & {\frac{{ - c_{8} }}{{c_{9} }}} \\ \end{array} } \right] \\ {\mathbf{R}}_{9} & = \left[ {\begin{array}{ccc} 0 & { - c_{2} } & {\frac{{ - c_{9} }}{{c_{7} }}} \\ 0 & {c_{1} } & {\frac{{ - c_{9} }}{{c_{8} }}} \\ 0 & 0 & 1 \\ \end{array} } \right] \\ \end{aligned}$$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faroughi, S., Eriksson, A. Co-rotational formulation for dynamic analysis of space membranes based on triangular elements. Int J Mech Mater Des 13, 229–241 (2017). https://doi.org/10.1007/s10999-015-9326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-015-9326-x

Keywords

Navigation