Skip to main content
Log in

A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this work, a new visco-hyperelastic constitutive model is proposed to describe the rate-dependent large deformation behaviour of an acrylic elastomer. The proposed model is based on the Zener model, which consists of a hyperelastic equilibrium spring and a Maxwell element to capture rate-dependent material response. The constitutive equation is based on the history integral of Gent strain energy function. The material constants of the developed model are determined with the aid of available different rate-dependent uniaxial tensile experimental results. The proposed model is validated with the earlier published experimental results of VHB 4910 acrylic elastomer which is considered now as one of the promising actuator materials. Fittings of the proposed model with the earlier published experimental results and present experimental stress-stretch results in different strain rates are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412 (1993)

    Article  Google Scholar 

  • Anani, Y., Alizadeh, Y.: Visco-hyperelastic constitutive law for modeling of foam’s behavior. Mater. Des. 32, 2940–2948 (2011)

    Article  Google Scholar 

  • Beatty, M.F., Krishnaswamy, S.: A theory of stress-softening in incompressible isotropic materials. J. Mech. Phys. Solids 48, 1931–1965 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Bergstrom, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998)

    Article  Google Scholar 

  • Biddiss, E., Chau, T.: Dielectric elastomers as actuators for upper limb prosthetics: challenges and opportunities. Med. Eng. Phys. 30, 403–418 (2008)

    Article  Google Scholar 

  • Carpi, F., Rossi, D.D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P.: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier science, Oxford (2008)

    Google Scholar 

  • Chakraborti, P., Toprakci, H.A.K., Yang, P., Spigna, N.D., Franzon, P., Ghosh, T.: A compact dielectric elastomer tubular actuator for refreshable Braille displays. Sens. Actuators A 179, 151–157 (2012)

    Article  Google Scholar 

  • Chiba, S., Waki, M.: Extending applications of dielectric elastomer artificial muscles to wireless communication systems. InTech, Rijeka, Croatia 20 (2011)

  • Chiba, S., Waki, M., Wada, T., Hirakawa, Y., Masuda, K., Ikoma, T.: Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators. Appl. Energy 104, 497–502 (2013)

    Article  Google Scholar 

  • Choi, H.R., Ryew, S.M., Jung, K.M., Kim, H.M., Jeon, J.W., Nam, J.D.: Soft actuator for robotic applications based on dielectric elastomer: quasi-static analysis. IEEE Int. Conf. Robot. Autom. 3, 3212–3217 (2002)

    Google Scholar 

  • Foo, C.C., Cai, S., Koh, S.J.A., Bauer, S., Suo, Z.: Model of dissipative dielectric elastomers. J. Appl. Phys. 111, 034102 (2012)

    Article  Google Scholar 

  • Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  • Goulbourne, N.C.: A constitutive model of polyacrylate interpenetrating polymer networks for dielectric elastomers. Int. J. Solids Struct. 48, 1085–1091 (2011)

    Article  MATH  Google Scholar 

  • Hong, W.: Modeling viscoelastic dielectrics. J. Mech. Phys. Solids. 59, 637–650 (2011)

  • Horgan, C.O., Saccomandi, G.: A molecular-statistical basis for the gent constitutive model of rubber elasticity. J. Elast. 68, 167–176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Hossain, M., Khoi, VuD, Steinmann, P.: Experimental study and numerical modelling of VHB 4910 polymer. Comput. Mat. Sci. 59, 65–74 (2012)

    Article  Google Scholar 

  • Kofod, G.: Dielectric Elastomer Actuator, PhD thesis Technical University of Denmark (2001)

  • Koh, S.J.A., Keplinger, C., Li, T., Bauer, S., Suo, Z.: Dielectric elastomer generators: how much energy can be converted? IEEE/ASME Trans. Mechatron. 16(1), 33–41 (2011)

    Article  Google Scholar 

  • Leng, J., Liu, L., Liu, Y., Yu, K., Sun, S.: Electromechanical stability of dielectric elastomers. Appl. Phys. Lett. 94, 211901 (2009)

    Article  Google Scholar 

  • Li, T., Keplinger, C., Baumgartner, R., Bauer, S., Yang, W., Suo, Z.: Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J. Mech. Phys. Solids 61, 611–628 (2013a)

    Article  Google Scholar 

  • Li, T., Keplinger, C., Baumgartner, R., Bauer, S., Yang, W., Suo, Z.: Giant voltage induced deformation in dielectric elastomers near the verge of snap-through instability. J. Mech. Phys. Solids 61, 611–628 (2013b)

    Article  Google Scholar 

  • Linder, C., Tkachuk, M., Miehe, C.: A micromechanically motivated diffusion-based transient network model and its incorporation into finite rubber viscoelasticity. J. Mech. Phys. Solids 59, 2134–2156 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, Y., Liu, L., Zhang, Z., Shi, L., Leng, J.: Comment on “Method to analyze electromechanical stability of dielectric elastomers”. Appl. Phys. Lett. 93, 106101 (2008)

    Article  Google Scholar 

  • Liu, Y., Liu, L., Zhang, Z., Leng, J.: Dielectric elastomer film actuators: characterization, experiment and analysis. Smart Mater. Struct. 18, 095024 (2009a)

    Article  Google Scholar 

  • Liu, Y., Liu, L., Yu, K., Sun, S., Leng, J.: An investigation on electromechanical stability of dielectric elastomers undergoing large deformation. Smart Mater. Struct. 18, 095024 (2009b)

    Article  Google Scholar 

  • Liu, Y., Liu, L., Zhang, Z., Jiao, Y., Sun, S., Leng, J.: Analysis and manufacture of an energy harvester based on a Mooney-Rivlin-type dielectric elastomer. EPL 90(3), 36004 (2010)

    Article  Google Scholar 

  • Liu, Y., Liu, L., Luo, X., Li, B., Leng, J.: Electromechanical stability and snap-through stability of dielectric elastomers undergoing polarization saturation. Mech. Mater. 55, 60–72 (2012)

    Article  Google Scholar 

  • Liu, Y., Liu, L., Yu, K., Leng, J.: Thermoelectromechanical stability of dielectric elastomer undergoing temperature variation. Mech. Mater. 72, 33–45 (2014)

    Article  Google Scholar 

  • Lockett, F.J.: Non-linear Viscoelastic Solids. Academic Press, New York (1972)

    Google Scholar 

  • Lochmatter, P., Kovacs, G., Micheal, S.: Characterization of dielectric elastomer actuators based on a hyperelastic film model. Sens. Actuators A 135, 748–757 (2007)

    Article  Google Scholar 

  • Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. Royal Soc. Lond. A 326, 565–584 (1972)

    Article  MATH  Google Scholar 

  • Pang X., Li B., Xia D., Jing S.: Application of dielectric elastomer planar actuators in a micropump chip, ICIEA 2009, 978-1-4244-2800-7/09, 1199–1202 (2009)

  • Pelrine, R., Kornbluh, R., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S.: Dielectric elastomers: generator mode fundamentals and applications. Proc. SPIE. 4329, 148–156 (2001)

  • Plante, J.S., Dubowsky, S.: Large-scale failure modes of dielectric elastomer actuators. Int. J. Solids Struct. 43, 7727–7751 (2006)

    Article  MATH  Google Scholar 

  • Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. Royal Soc. A 241, 379–397 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  • Shankar, R., Ghosh, T.K., Spontak, R.J.: Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3, 1116–1129 (2007)

    Article  Google Scholar 

  • Shim, V.P.W., Yang, L.M., Lim, C.T., Law, P.H.: A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber. J. Appl. Polym. Sci. 92, 523–531 (2004)

    Article  Google Scholar 

  • Wang, Y., Xue, H., Chen, H., Qiang, J.: A dynamic visco-hyperelastic model of dielectric elastomers and their energy dissipation characteristics. Appl. Phys. A 112(2), 339–347 (2013)

    Article  Google Scholar 

  • Wissler, M., Mazza, E.: Mechanical behavior of an acrylic elastomers used in dielectric elastomers actuators. Sens. Actuators A 134, 494–504 (2007)

    Article  Google Scholar 

  • Yang, L.M., Shim, V.P.W.: A visco-hyperelastic constitutive description of elastomeric foam. Int. J. Impact Eng. 30, 1099–1110 (2004)

    Article  Google Scholar 

  • Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Tech. 66, 754–771 (1993)

    Article  Google Scholar 

  • Zhang, J., Chen, H., Sheng, J., Liu, L., Wang, Y., Jia, S.: Constitutive relation of viscoelastic dielectric elastomers. Theor. Appl. Mech. Lett. 3, 054011 (2013)

    Article  Google Scholar 

  • Zhao, X., Suo, Z.: Method to analyze programmable deformation of dielectric elastomer layers. Appl. Phys. Lett. 93, 251902 (2008a)

    Article  Google Scholar 

  • Zhao, X., Suo, Z.: Electrostriction in elastic dielectrics undergoing large deformation. J. Appl. Phys. 104, 123530 (2008b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karali Patra.

Appendix A

Appendix A

1.1 A.1 Fundamentals of hyperelasticity of elastomer

Study of highly nonlinear elastic materials undergoing large deformation is called as hyperelasticity and the material is special case of Cauchy elastic material (Beatty and Krishnaswamy 2000). However for large deformations, stresses are derived from the strain energy potential function \( W \) which is usually expressed in the form of deformation gradient tensor \( \varvec{F} \) and the principal invariants. \( \varvec{F} \) relates physical quantities from their initial and deformed state. Consider a point initially located at some position X in a material. Displacement of a new position x after deformation gradient \( \varvec{F} \) is defined as \( \varvec{F} = {{\partial x} \mathord{\left/ {\vphantom {{\partial x} {\partial X}}} \right. \kern-0pt} {\partial X}} \).

Generally deformation of the elastomeric material will be expressed in terms of the left Cauchy-Green deformation tensor \( \varvec{B} = \varvec{F} \cdot \varvec{F}^{T} \), or by the right Cauchy-Green deformation tensor \( \varvec{C} = \varvec{F}^{T} \cdot \varvec{F} \) which is related to Langrangian strain tensor denoted by \( \varvec{E} = {{\left( {\varvec{C} - \varvec{I}} \right)} \mathord{\left/ {\vphantom {{\left( {\varvec{C} - \varvec{I}} \right)} 2}} \right. \kern-0pt} 2} \) where \( \varvec{I} \) is the identity tensor.

Simply, we can write \( \frac{{\partial \varvec{E}}}{{\partial \varvec{C}}} = \frac{1}{2} \) (A.1)

If a material is said to be path-independent or hyperelastic then the work done by the stresses during deformation process depends only on its initial and final configurations at time 0 and t respectively.

Therefore path-independent strain energy function

$$ W = \int\limits_{\varvec{0}}^{\varvec{t}} {\varvec{S: }} \dot{\varvec{E}}dt\quad {\text{hence}}\,\frac{dW}{dt} = \varvec{S:\dot{E}}\,{\text{or}}\,\dot{W} = \varvec{S:\dot{E}} $$
(A.2)

where \( \varvec{S} \) is second Piola-Kirchoff stress tensor and \( \dot{\varvec{E}} \) = time rate of change of Lagrangian strain tensor

Assuming W = W( E ( \( {\mathbf{X}} \) ), \( {\mathbf{X}} \) ) then \( \dot{W} = \sum\limits_{i,j = 1}^{3} {\frac{\partial W}{{\partial \varvec{E}_{ij} }}} \dot{\varvec{E}}_{ij} \) (A.3)

On comparing Eq. (A.2) and Eq. (A.3), one gets

$$ \varvec{S} = \frac{\partial W}{{\partial \varvec{E}}} = \left( {\frac{\partial W}{{\partial \varvec{C}}}} \right)\left( {\frac{{\partial \varvec{C}}}{{\partial \varvec{E}}}} \right) $$
(A.4)

Therefore by using Eqs. (A.1) and (A.4), one will get

$$ \varvec{S} = 2\frac{\partial W}{{\partial \varvec{C}}} $$
(A.5)

Strain energy potential function,\( W = W\left( {I_{1} ,I_{2} ,I_{3} } \right) \), where \( I_{1},\,I_{2} \) and \( I_{3} \) are first, second and third invariants of the right Cauchy-Green deformation tensor C.

$$ I_{1} = tr(\varvec{C}) = \lambda_{1}^{2} + \lambda_{2}^{2} + \lambda_{3}^{2} $$
(A.6)
$$ I_{2} = \frac{1}{2}\left[ {\left( {tr\varvec{C}} \right)^{2} - tr\varvec{C}^{2} } \right] = \frac{1}{2}tr\left( {\varvec{CC}} \right) = \left( {\lambda_{1} \lambda_{2} } \right)^{2} + \left( {\lambda_{2} \lambda_{3} } \right)^{2} + \left( {\lambda_{3} \lambda_{1} } \right)^{2} $$
(A.7)
$$ I_{3} = det(\varvec{C}) = \left( {\lambda_{1} \lambda_{2} \lambda_{3} } \right)^{2} = 1 $$
(A.8)

where, \( \lambda_{1} ,\lambda_{2} , \) and \( \lambda_{3} \) are principal stretches in three directions.

With the application of chain rule,

$$ \varvec{S} = 2\left( {\left( {\frac{\partial W}{{\partial I_{1} }}} \right)\left( {\frac{{\partial I_{1} }}{{\partial \varvec{C}}}} \right) + \left( {\frac{\partial W}{{\partial I_{2} }}} \right)\left( {\frac{{\partial I_{2} }}{{\partial \varvec{C}}}} \right) + \left( {\frac{\partial W}{{\partial I_{3} }}} \right)\left( {\frac{{\partial I_{3} }}{{\partial \varvec{C}}}} \right)} \right) $$
(A.9)

Since \( \frac{{\partial I_{1} }}{{\partial \varvec{C}}} = \varvec{I, }\,\frac{{\partial I_{2} }}{{\partial \varvec{C}}} = I_{1} \varvec{I} - \varvec{C}\,{\text{and}}\,\frac{{\partial I_{3} }}{{\partial \varvec{C}}} = I_{3} \varvec{C}^{ - 1} \) (A.10)

Equation (A.9) can be written as

$$ \varvec{S} = 2\left( {\frac{\partial W}{{\partial I_{1} }}\varvec{I} + \frac{\partial W}{{\partial I_{2} }}\left( {I_{1} \varvec{I} - \varvec{C}} \right) + \frac{\partial W}{{\partial I_{3} }}I_{3} \varvec{C}^{ - 1} } \right) $$
(A.11)

Transformation of the second Piola-Kirchoff stress to Cauchy stress tensor \( \varvec{\sigma} \) results

$$ \varvec{\sigma}= \frac{1}{J}\varvec{FSF}^{T} $$
(A.12)

where, \( J = det\varvec{F} \), where \( \varvec{F} = \left[ {\begin{array}{*{20}c} {\lambda_{1} } & 0 & 0 \\ 0 & {\lambda_{2} } & 0 \\ 0 & 0 & {\lambda_{3} } \\ \end{array} } \right] \)

Using Eqs. (A.11) and (A.12), \( \varvec{\sigma} \) can be written as

$$ \varvec{\sigma}= \frac{2}{J}\varvec{F}\left( {\frac{\partial W}{{\partial I_{1} }}\varvec{I} + \frac{\partial W}{{\partial I_{2} }}\left( {I_{1} \varvec{I} - \varvec{C}} \right) + \frac{\partial W}{{\partial I_{3} }}I_{3} \varvec{C}^{ - 1} } \right)\varvec{F}^{T} = \frac{2}{J}\left( {\varvec{F}\frac{\partial W}{{\partial I_{1} }}\varvec{IF}^{T} + \varvec{F}\frac{\partial W}{{\partial I_{2} }}\left( {I_{1} \varvec{I} - \varvec{C}} \right)\varvec{F}^{T} + \varvec{F}\frac{\partial W}{{\partial I_{3} }}I_{3} \varvec{C}^{ - 1} \varvec{F}^{T} } \right) = \frac{2}{J}\left( {\frac{\partial W}{{\partial I_{1} }}\varvec{FIF}^{T} + \frac{\partial W}{{\partial I_{2} }}\left( {I_{1} \varvec{I} - \varvec{C}} \right)\varvec{FF}^{T} + \frac{\partial W}{{\partial I_{3} }}I_{3} \varvec{C}^{ - 1} \varvec{FF}^{T} } \right) $$
(A.13)

Since, \( \varvec{B} = \varvec{FF}^{T} ,\,\;\varvec{FF}^{ - 1} = \varvec{I}\;and\;\varvec{F}^{ - T} \varvec{F}^{T} = \varvec{I} \)

Therefore

$$ \varvec{\sigma}= \frac{2}{J}\left( {\frac{\partial W}{{\partial I_{1} }}\varvec{B} + \frac{\partial W}{{\partial I_{2} }}\left( {I_{1} \varvec{B} - \varvec{BB}} \right) + \frac{\partial W}{{\partial I_{3} }}I_{3} \varvec{I}} \right) $$
(A.14)

Considering incompressibility of the material, \( I_{3} = 1\;\; \) and \( J = 1 \)

Cauchy stress at equilibrium condition can be written as

$$ \varvec{\sigma}= - p\varvec{I} + 2\left( {\frac{\partial W}{{\partial I_{1} }} + I_{1} \frac{\partial W}{{\partial I_{2} }}} \right)\varvec{B} - 2\frac{\partial W}{{\partial I_{2} }}\varvec{BB} $$
(A.15)

where, p is hydrostatic pressure and W is strain energy function in equilibrium state.

1.2 A.2 Gent Model

The strain energy density function for the Gent model (Gent, 1996) is

$$ W = - \frac{\mu }{2}J_{m} ln\left( {1 - \frac{{I_{1} - 3}}{{J_{m} }}} \right) $$
(A.16)

where \( \mu \) is the shear modulus, J m is the limiting value for \( \left( {I_{1} - 3} \right) \), reflecting limiting chain extensibility.

Since \( W = W\left( {I_{1} } \right) \), \( \frac{\partial W}{{\partial I_{2} }} = 0 \)

Cauchy stress tensor shown in Eq. (A.15) will become

$$ \varvec{\sigma}= - p\varvec{I} + 2\frac{\partial W}{{\partial I_{1} }}\varvec{B} $$
(A.17)

Using Eq. (A.16) and (A.17) Cauchy stress for the Gent model is expressed as

$$ \varvec{\sigma}= - p\varvec{I} + \frac{{\mu J_{m} }}{{J_{m} - I_{1} + 3}}\varvec{B} $$
(A.18)

For uniaxial tensile extension deformation gradient

$$ \varvec{F} = \varvec{F}^{T} = \left[ {\begin{array}{*{20}c} \lambda & 0 & 0 \\ 0 & {\frac{1}{\sqrt \lambda }} & 0 \\ 0 & 0 & {\sqrt \lambda } \\ \end{array} } \right] $$

Left Cauchy-Green deformation tensor can be written as

$$ \varvec{B} = \varvec{FF}^{T} = \left[ {\begin{array}{*{20}c} {\lambda^{2} } & 0 & 0 \\ 0 & {\frac{1}{\lambda }} & 0 \\ 0 & 0 & {\frac{1}{\lambda }} \\ \end{array} } \right] $$

where elements of tensor B is as follows;

$$ B_{11} = \lambda^{2} ,B_{22} = B_{33} = \frac{1}{\lambda } $$

For the uniaxial case

$$ I_{1} = tr\varvec{B} = \lambda^{2} + \frac{2}{\lambda } $$
(A.19)

From Eq. (A.18)

$$ \sigma_{11} = - p1 + \frac{{\mu J_{m} }}{{J_{m} - I_{1} + 3}}B_{11} $$
(A.20)
$$ \sigma_{22} = - p1 + \frac{{\mu J_{m} }}{{J_{m} - I_{1} + 3}}B_{22} $$
(A.21)

As \( (\sigma_{22} = 0) \)

$$ p = \frac{{\mu J_{m} }}{{J_{m} - I_{1} + 3}}B_{22} $$
(A.22)

Using the Eqs. (A.20) and (A.22)

$$ \sigma_{11} = \frac{{\mu J_{m} }}{{J_{m} - I_{1} + 3}}(B_{11} - B_{22} ) $$
(A.23)

Hence

$$ \sigma_{11} = \frac{{\mu J_{m} }}{{J_{m} - I_{1} + 3}}\left( {\lambda^{2} - \frac{1}{\lambda }} \right) $$
(A.24)

Since, \( \sigma_{eng} = \frac{1}{\lambda }\sigma_{11} \), Eq. (A.24) can be written in terms of engineering stress as

$$ \sigma_{eng} = \frac{{\mu J_{m} }}{{J_{m} - I_{1} + 3}}\left( {\lambda - \frac{1}{{\lambda^{2} }}} \right) $$
(A.25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, K., Sahu, R.K. A visco-hyperelastic approach to modelling rate-dependent large deformation of a dielectric acrylic elastomer. Int J Mech Mater Des 11, 79–90 (2015). https://doi.org/10.1007/s10999-014-9270-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9270-1

Keywords

Navigation