Skip to main content
Log in

Topology optimization with geometrically non-linear based on the element free Galerkin method

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this article, the element free Galerkin (EFG) method is applied to carry out the topology optimization of the geometrically non-linear continuum structures. In EFG method, the moving least squares shape function is used to approximate the displacements. The 2D geometrically non-linear formulation is presented based on the EFG method. The penalty method is explored to enforce the essential boundary conditions. Considering the relative density of nodes as design variables, the minimization of compliance as an objective function, the mathematical formulation of the topology optimization is developed using the solid isotropic microstructures with penalization interpolation scheme. Sensitivity of the objective function is derived based on the adjoint method. Numerical examples show that the proposed approach is feasible and effective for the topology optimization of the geometrically non-linear continuum structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin method. Int. J. Numer. Methods Eng. 37, 229–256 (1994a)

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko, T., Gu, L., Lu, Y.Y.: Fracture and crack growth by element free Galerkin methods. Modell. Simul. Mater. Sci. Eng. 2, 519–534 (1994b)

    Article  Google Scholar 

  • Belytschko, T., Krysl, P., Krongauz, Y.: A three-dimensional explicit element-free Galerkin method. Int. J. Numer. Methods Fluids 24(12), 1253–1270 (1997)

    Article  MATH  Google Scholar 

  • Belytschko, T., Liu, W.K., Moran, B.: Nonlinear finite elements for continua and structures. Wiley, New York (2000)

    MATH  Google Scholar 

  • Bendsoe, M.P., Kikuchi, N.: Generating optimal topology in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1989)

    Article  MathSciNet  Google Scholar 

  • Bendsoe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)

    Article  Google Scholar 

  • Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin, Heidelberg, New York (2003)

    Google Scholar 

  • Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190, 3443–3459 (2001)

    Article  MATH  Google Scholar 

  • Bruns, T.E., Sigmund, O., Tortorelli, D.A.: Numerical methods for the topology optimization of structures that exhibit snap-through. Int. J. Numer. Methods Eng. 55(10), 1215–1237 (2002)

    Article  MATH  Google Scholar 

  • Buhl, T., Pedersen, C.B.W., Sigmund, O.: Stiffness design of geometrically nonlinear structures using topology optimization. Struct. Multidiscipl. Optim. 19, 93–104 (2000)

    Article  Google Scholar 

  • Cho, S., Kwak, J.: Topology design optimization of geometrically non-linear structures using meshfree method. Comput. Methods Appl. Mech. Eng. 195, 5909–5925 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Du, Y.X., Chen, L.P., Luo, Z.: A meshless Galerkin approach for topology optimization of monolithic compliant mechanisms using optimality criteria method. Acta Mech. Solida Sin. 28(1), 102–108 (2007)

    Google Scholar 

  • Jung, D., Gea, H.C.: Topology optimization of nonlinear structures. Finite Elem. Anal. Des. 40, 1417–1427 (2004)

    Article  Google Scholar 

  • Kang, Z., Wang, Y.Q.: Structural topology optimization based on non-local Shepard interpolation of density field. Comput. Methods Appl. Mech. Eng. 200, 3515–3525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, Z., Wang, Y.Q.: A nodal variable method of structural topology optimization based on Shepard interplant. Int. J. Numer. Meth. Eng. 90(3), 329–342 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, S., Atluri, S.N.: The MLPG mixed collocation method for material orientation and topology optimization of anisotropic solids and structures. Comput. Model. Eng. Sci. 30(1), 37–56 (2008)

    MATH  Google Scholar 

  • Liu, G.R., Chen, X.L.: A mesh-free method for static and free vibration analyses of thin plates of complicated shape. J. Sound Vib. 241(5), 839–855 (2001)

    Article  Google Scholar 

  • Luo, Z., Zhang, N., Gao, W., Ma, H.: Structural shape and topology optimization using a meshless Galerkin level set method. Int. J. Numer. Methods Eng. 90, 369–389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, Z., Zhang, N., Wang, Y., Gao, W.: Topology optimization of structures using meshless density variable approximants. Int. J. Numer. Methods Eng. 93, 443–464 (2013)

    Article  MathSciNet  Google Scholar 

  • Matsui, K., Terada, K.: Continuous approximation of material distribution for topology optimization. Int. J. Numer. Methods Eng. 59, 1925–1944 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Rahmatalla, S.F., Swan, C.C.: A Q4/Q4 continuum structural topology optimization implementation. Struct. Multidiscipl. Optim. 27, 130–135 (2004)

    Article  Google Scholar 

  • Rozvany, G., Kirch, U., Bendsøe, M.P., Sigmund, O.: Layout optimization of structures. Appl. Mech. Rev. 48, 41–119 (1995)

    Article  Google Scholar 

  • Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16(1), 68–75 (1998)

    Article  Google Scholar 

  • Svanberg, K.: The method of moving asymptotes: a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M.Y., Wang, X.M., Guo, D.M.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003)

    Article  MATH  Google Scholar 

  • Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  • Zheng, J., Long, S.Y., Li, G.Y.: The topology optimization design for continuum structure based on the element free Galerkin method. Eng. Anal. Boundary Elem. 34(7), 666–672 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, J.X., Zou, W.: Meshless approximation combined with implicit topology description for optimization of continua. Struct. Multidiscipl. Optim. 36(4), 347–353 (2008)

    Article  MATH  Google Scholar 

  • Zhou, M., Shyy, Y.K., Thomas, H.L.: Checkerboard and minimum member size control in topology optimization. Struct. Multidiscipl. Optim. 21(2), 152–158 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 11202075, No. 11372106), Research Fund for the Doctoral Program of Higher Education of China (No. 20120161120006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xujing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Yang, X. & Long, S. Topology optimization with geometrically non-linear based on the element free Galerkin method. Int J Mech Mater Des 11, 231–241 (2015). https://doi.org/10.1007/s10999-014-9257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-014-9257-y

Keywords

Navigation