Skip to main content
Log in

Randomness of the square root of 2 and the Giant Leap, Part 1

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We prove that the “quadratic irrational rotation” exhibits a central limit theorem. More precisely, let α be an arbitrary real root of a quadratic equation with integer coefficients; say, α = \( \sqrt 2 \). Given any rational number 0 < x < 1 (say, x = 1/2) and any positive integer n, we count the number of elements of the sequence α, 2α, 3α, …, modulo 1 that fall into the subinterval [0, x]. We prove that this counting number satisfies a central limit theorem in the following sense. First, we subtract the “expected number” nx from the counting number, and study the typical fluctuation of this difference as n runs in a long interval 1 ≤ nN. Depending on α and x, we may need an extra additive correction of constant times logarithm of N; furthermore, what we always need is a multiplicative correction: division by (another) constant times square root of logarithm of N. If N is large, the distribution of this renormalized counting number, as n runs in 1 ≤ nN, is very close to the standard normal distribution (bell shaped curve), and the corresponding error term tends to zero as N tends to infinity. This is the main result of the paper (see Theorem 1.1). The proof is rather complicated and long; it has many interesting detours and byproducts. For example, the exact determination of the key constant factors (in the additive and multiplicative norming), which depend on α and x, requires surprisingly deep algebraic tools such as Dedeking sums, the class number of quadratic fields, and generalized class number formulas. The crucial property of a quadratic irrational is the periodicity of its continued fraction. Periodicity means self-similarity, which leads us to Markov chains: our basic probabilistic tool to prove the central limit theorem. We also use a lot of Fourier analysis. Finally, I just mention one byproduct of this research: we solve an old problem of Hardy and Littlewood on diophantine sums.

The whole paper consists of an introduction and 17 sections. Part 1 contains the Introduction and Sections 1–7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. van Aardenne-Ehrenfest, Proof of the impossibility of a just distribution of an infinite sequence of points over an interval, Proc. Kon. Ned. Akad. v. Wetensch., 48 (1945), 266–271.

    Google Scholar 

  2. T. van Aardenne-Ehrenfest, On the impossibility of a just distribution, Proc. Kon. Ned. Akad. v. Wetensch., 52 (1949), 734–739.

    MATH  Google Scholar 

  3. J. Beck, Randomness of n\( \sqrt 2 \) mod 1 and a Ramsey property of the hyperbola, Sets, Graphs and Numbers, Colloq. Math. Soc. János Bolyai 60, Budapest, 1992, 23–66.

  4. J. Beck, From probabilistic diophantine approximation to quadratic fields, Random and Quasi-Random Point Sets, Lecture Notes in Statistics 138, Springer-Verlag, New York, 1998, 1–49.

    Google Scholar 

  5. J. Beck, Randomness in lattice point problems, Discrete Math., 229 (2001), 29–45.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Beck, Lattice point problems: crossroads of number theory, probability theory, and Fourier analysis, Fourier Analysis and Convexity (eds. L. A. Brandolini et al.), Birkhauser, Boston, 2004, 1–35.

    Google Scholar 

  7. J. Beck and W. W. L. Chen, Irregularities of Distribution, Cambridge Tracts in Mathematics 89, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  8. B. Chazelle, The Discrepancy Method, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  9. J. G. van der Corput, Verteilungsfunktionen. I and II., Proc. Kon. Ned. Akad. v. Wetensch., 38 (1935), 813–821 and 1058–1066.

    MATH  Google Scholar 

  10. H. Davenport, Note on irregularities of distribution, Mathematika, 3 (1956), 131–135.

    Article  MathSciNet  MATH  Google Scholar 

  11. U. Dieter, Das Verhaltender Kleinschen Functionen gegenüber Modultransformationen und verallgemeinerte Dedekindsche Summen, J. Reine Angew. Math., 201 (1959), 37–70.

    MathSciNet  MATH  Google Scholar 

  12. Y. Dupain, Discrépance de la suite, Ann. Inst. Fourier (Grenoble), 29 (1979), 81–106.

    MathSciNet  MATH  Google Scholar 

  13. Y. Dupain and Vera T. Sós, On the discrepancy of sequences, Topics in classical number theory, Colloquium, Budapest 1981, vol. 1, Colloq. Math. Soc. János Bolyai 34, 1984, 355–387.

  14. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1 (3rd edn), Wiley, New York, 1969.

    Google Scholar 

  15. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2 (2nd edn), Wiley, New York, 1971.

    Google Scholar 

  16. G. H. Hardy and J. Littlewood, The lattice-points of a right-angled triangle. I, Proc. London Math. Soc., 3 (1920), 15–36.

    Google Scholar 

  17. G. H. Hardy and J. Littlewood, The lattice-points of a right-angled triangle. II, Abh. Math. Sem. Hamburg, 1 (1922), 212–249.

    Article  Google Scholar 

  18. G. H. Hardy and J. Littlewood, Some problems of Diophantine approximation: A series of cosecants, Bull. Calcutta Math. Soc., 20 (1930), 251–266.

    MATH  Google Scholar 

  19. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th edition, Clarendon Press, Oxford, 1979.

    MATH  Google Scholar 

  20. A. Khintchine, Continued Fractions, English translation, P. Noordhoff, Groningen, The Netherlands, 1963.

    MATH  Google Scholar 

  21. D. E. Knuth, Notes on generalized Dedekind sums, Acta Arithmetica, 33 (1977), 297–325.

    MathSciNet  MATH  Google Scholar 

  22. S. Lang, Introduction to Diophantine Approximations, Addison-Wesley, 1966.

  23. J. Matousek, Geometric Discrepancy, Algorithms and Combinatorics 18, Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  24. A. Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen. I., Abh. Hamburg Sem., 1 (1922), 77–99.

    Article  Google Scholar 

  25. H. Rademacher and E. Grosswald, Dedekind Sums, Carus Monograph No. 16, Math. Assoc. Amer., 1972.

  26. K. F. Roth, Irregularities of distribution, Mathematika, 1 (1954), 73–79.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. M. Schmidt, Irregularities of distribution. VII, Acta Arithmetica, 21 (1972), 45–50.

    MathSciNet  MATH  Google Scholar 

  28. J. Schoissengeier, Another proof of a theorem of Beck, Monatsh. Math., 129 (2000), 147–151.

    Article  MathSciNet  MATH  Google Scholar 

  29. Vera T. Sós, On the distribution mod 1 of the sequence {}, Ann. Univ. Sci. Budapest, 1 (1958), 127–234.

    MATH  Google Scholar 

  30. Vera T. Sós and S. K. Zaremba, The mean-square discrepancies of some two-dimensional lattices, Studia Sci. Math. Hungarica, 14 (1979), 255–271.

    MATH  Google Scholar 

  31. S. Swierczkowski, On successive settings of an arc on the circumeference of a circle, Fund. Math., 46 (1958), 187–189.

    MathSciNet  Google Scholar 

  32. H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann., 77 (1916), 313–352.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. B. Zagier, Nombres de classes at fractions continues, J. Arithmetiques de Bordeaux, Asterisque, 24–25 (1975), 81–97.

    MathSciNet  Google Scholar 

  34. D. B. Zagier, Zeta-funktionen und quadratische Körper, Hochschultext, Springer, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to József Beck.

Additional information

Communicated by Attila Pethő

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beck, J. Randomness of the square root of 2 and the Giant Leap, Part 1. Period Math Hung 60, 137–242 (2010). https://doi.org/10.1007/s10998-010-2137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-010-2137-9

Mathematics subject classification numbers

Key words and phrases

Navigation