Artač, M., Jogan, M., & Leonardis, A. (2002). Incremental PCA for on-line visual learning and recognition. In *Proceedings of the 16th international conference on pattern recognition* (Vol. 3, pp. 781–784).

Bertsekas, D. P. (1999). *Nonlinear programming*. Massachusetts: Athena Scientific.

Bhojanapalli, S., Kyrillidis, A., & Sanghavi, S. (2016). Dropping convexity for faster semi-definite optimization. In *Proceedings of the 29th conference on learning theory* (pp. 530–582).

Bonnans, J. F., & Shapiro, A. (1998). Optimization problems with perturbations: A guided tour.

*SIAM Review*,

*40*(2), 228–264.

MathSciNetCrossRefMATHGoogle ScholarBottou, L. (1998). Online learning and stochastic approximations.

*On-line Learning in Neural Networks*,

*17*(9), 142.

MATHGoogle ScholarBurer, S., & Monteiro, R. D. C. (2005). Local minima and convergence in low-rank semidefinite programming.

*Mathematical Programming*,

*103*(3), 427–444.

MathSciNetCrossRefMATHGoogle ScholarCai, J., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion.

*SIAM Journal on Optimization*,

*20*(4), 1956–1982.

MathSciNetCrossRefMATHGoogle ScholarCai, T. T., & Zhou, W. (2013). A max-norm constrained minimization approach to 1-bit matrix completion.

*Journal of Machine Learning Research*,

*14*(1), 3619–3647.

MathSciNetMATHGoogle ScholarCai, T. T., & Zhou, W. X. (2016). Matrix completion via max-norm constrained optimization.

*Electronic Journal of Statistics*,

*10*(1), 1493–1525.

MathSciNetCrossRefMATHGoogle ScholarCandès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? *Journal of the ACM*, *58*(3), 11:1–11:37.

Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization.

*Foundations of Computational Mathematics*,

*9*(6), 717–772.

MathSciNetCrossRefMATHGoogle ScholarDavenport, M. A., Plan, Y., van den Berg, E., & Wootters, M. (2014). 1-Bit matrix completion.

*Information and Inference*,

*3*(3), 189–223.

MathSciNetCrossRefMATHGoogle ScholarDonoho, D. L. (1995). De-noising by soft-thresholding.

*IEEE Transactions on Information Theory*,

*41*(3), 613–627.

MathSciNetCrossRefMATHGoogle ScholarFazel, M., Hindi, H., & Boyd, S. P. (2001). A rank minimization heuristic with application to minimum order system approximation. In *Proceedings of the American control conference* (Vol. 6, pp. 4734–4739).

Feng, J., Xu, H., & Yan, S. (2013). Online robust PCA via stochastic optimization. In *Proceedings of the 27th annual conference on neural information processing systems* (pp. 404–412).

Foygel, R., Srebro, N., & Salakhutdinov, R. (2012). Matrix reconstruction with the local max norm. In *Proceedings of the 26th annual conference on neural information processing systems* (pp. 944–952).

Jalali, A., & Srebro, N. (2012). Clustering using max-norm constrained optimization. In *Proceedings of the 29th international conference on machine learning*.

Jolliffe, I. (2005).

*Principal component analysis*. Hoboken: Wiley Online Library.

CrossRefMATHGoogle ScholarKlopp, O. (2014). Noisy low-rank matrix completion with general sampling distribution.

*Bernoulli*,

*20*(1), 282–303.

MathSciNetCrossRefMATHGoogle ScholarLee, J. D., Recht, B., Salakhutdinov, R., Srebro, N., & Tropp, J. A. (2010). Practical large-scale optimization for max-norm regularization. In *Proceedings of the 24th annual conference on neural information processing systems* (pp. 1297–1305).

Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In *Proceedings of the 27th international conference on machine learning* (pp. 663–670).

Mairal, J. (2013). Stochastic majorization-minimization algorithms for large-scale optimization. In *Proceedings of the 27th annual conference on neural information processing systems* (pp. 2283–2291).

Mairal, J., Bach, F. R., Ponce, J., & Sapiro, G. (2010). Online learning for matrix factorization and sparse coding.

*Journal of Machine Learning Research*,

*11*, 19–60.

MathSciNetMATHGoogle ScholarNeyshabur, B., Makarychev, Y., & Srebro, N. (2014). Clustering, hamming embedding, generalized LSH and the max norm. In *Proceedings of the 25th international conference on algorithmic learning theory* (pp. 306–320).

Orabona, F., Argyriou, A., & Srebro, N. (2012). PRISMA: PRoximal Iterative SMoothing Algorithm. CoRR abs/1206.2372.

Recht, B., Fazel, M., & Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization.

*SIAM Review*,

*52*(3), 471–501.

MathSciNetCrossRefMATHGoogle ScholarRennie, J. D. M., & Srebro, N. (2005). Fast maximum margin matrix factorization for collaborative prediction. In *Proceedings of the 22nd international conference on machine learning* (pp. 713–719).

Salakhutdinov, R., & Srebro, N. (2010). Collaborative filtering in a non-uniform world: Learning with the weighted trace norm. In *Proceedings of the 24th annual conference on neural information processing systems* (pp. 2056–2064).

Shen, J., Xu, H., & Li, P. (2014). Online optimization for max-norm regularization. In *Proceedings of the 28th annual conference on neural information processing systems* (pp. 1718–1726).

Srebro, N., Rennie, J. D. M., & Jaakkola, T. S. (2004). Maximum-margin matrix factorization. In *Proceedings of the 18th annual conference on neural information processing systems* (pp. 1329–1336).

Srebro, N., & Shraibman, A. (2005). Rank, trace-norm and max-norm. In *Proceedings of the 18th annual conference on learning theory* (pp. 545–560).

Van der Vaart, A. W. (2000).

*Asymptotic statistics* (Vol. 3). Cambridge: Cambridge University Press.

MATHGoogle ScholarWang, H., & Banerjee, A. (2014). Randomized block coordinate descent for online and stochastic optimization. CoRR abs/1407.0107.

Xu, H., Caramanis, C., & Mannor, S. (2010). Principal component analysis with contaminated data: The high dimensional case. In *Proceedings of the 23rd conference on learning theory* (pp. 490–502).

Xu, H., Caramanis, C., & Mannor, S. (2013). Outlier-robust PCA: The high-dimensional case.

*IEEE Transactions on Information Theory*,

*59*(1), 546–572.

MathSciNetCrossRefGoogle ScholarXu, H., Caramanis, C., & Sanghavi, S. (2012). Robust PCA via outlier pursuit.

*IEEE Transactions on Information Theory*,

*58*(5), 3047–3064.

MathSciNetCrossRefGoogle ScholarZhou, Z., Li, X., Wright, J., Candès, E. J., & Ma, Y. (2010). Stable principal component pursuit. In *Proceedings of the 2010 IEEE international symposium on information theory* (pp. 1518–1522).