Ahmadi, B., Kersting, K., Mladenov, M., & Natarajan, S. (2013). Exploiting symmetries for scaling loopy belief propagation and relational training.

*Machine Learning*,

*92*(1), 91–132.

MathSciNetCrossRefMATHGoogle ScholarBach, F. R., & Jordan, M. I. (2001). Thin junction trees. In *Proceedings of the 14th conference on neural information processing systems: Advances in neural information processing systems 14 (NIPS-2001)* (pp. 569–576). MIT Press.

Beal, M. J., & Ghahramani, Z. (2003). The variational bayesian em algorithm for incomplete data: With application to scoring graphical model structures.

*Bayesian Statistics*,

*7*, 453–464.

MathSciNetGoogle ScholarBui, H.B., Huynh, T.N., & de Salvo Braz, R. (2012). Exact lifted inference with distinct soft evidence on every object. In *Proceedings of the twenty-sixth AAAI conference on artificial intelligence*, July 22–26, Toronto, ON, Canada (pp. 1875–1881). AAAI Press.

Dauwels, J., Korl, S., & Loeliger, H.-A. (2005). Expectation maximization as message passing. In *Proceedings of IEEE international symposium on information theory (ISIT 2005)*, Adelaide Convention Centre Adelaide, Australia (pp. 583–586). IEEE computer society.

Davis, J., & Domingos, P. (2009). Deep transfer via second-order markov logic. In *Proceedings of the 26th annual international conference on machine learning (ICML-09)*. Montreal, QC: ACM.

De Salvo Braz, R., Amir, E., & Roth, D. (2005). Lifted first-order probabilistic inference. In *Proceedings of the 19th international joint conference on artificial intelligence*, Edinburgh, Scotland (pp. 1319–1325). AAAI Press.

De Salvo Braz, R., Natarajan, S., Bui, H., Shavlik, J., & Russell, S. (2009). Anytime lifted belief propagation. In *Proceedings of 6th international workshop on statistical relational learning*, Leuven, Belgium (Vol. 9, pp. 1–3).

Dechter, R., & Mateescu, R. (2003). A simple insight intoiterative belief propagation’s success. In *Proceedings of the nineteenth conference on uncertainty in artificial intelligence* (pp. 175–183). Acapulco, Mexico: Morgan Kaufmann Publishers Inc.

Elidan, G., McGraw, I., & Koller, D. (2006). Residual beliefpropagation: Informed scheduling for asynchronous message passing.In *Proceedings of the twenty-second conference annual conference onuncertainty in artificial intelligence (UAI-06)* (pp. 165–173). Arlington, VA: AUAI Press.

Flach, P. A. (2010). First-order logic. In *Encyclopedia of machine learning* (pp. 410–415). New York: Springer.

Frey, B. J., & MacKay, D. J. (1998). A revolution: Belief propagation in graphs with cycles. In *Proceedings of the 11th conference on neural information processing systems: Advances in neural information processing systems 11 (NIPS-1998)* (pp. 479–485). Morgan Kaufmann.

Getoor, L., & Taskar, B. (2007).

*Introduction to statistical relational learning (adaptive computation and machine learning)*. Cambridge: The MIT Press.

MATHGoogle ScholarGloberson, A., & Jaakkola, T. (2007). Convergent propagation algorithms via oriented trees. In *Proceedings of the twenty-third conference on uncertainty in artificial intelligence*, Vancouver, BC, Canada, July 19–22 (pp. 133–140). AUAI Press.

Gogate, V., & Domingos, P. (2011). Probabilistic theorem proving. In *Proceedings of the twenty-seventh conference annual conference on uncertainty in artificial intelligence (UAI-11)* (pp. 256–265). Corvallis, OR: AUAI Press.

Gogate, V., Jha, A. K., & Venugopal, D. (2012). Advances in lifted importance sampling. In *Proceedings of the twenty-sixth AAAI conference on artificial intelligence*, July 22–26, 2012 (pp. 1910–1916). Toronto, ON: AAAI Press.

Hazan, T., & Shashua, A. (2008). Convergent message-passing algorithms for inference over general graphs with convex free energies. In *Proceedings of the 24th conference in uncertainty in artificial intelligence*, Helsinki, Finland, July 9–12 (pp. 264–273).

Hazan, T., & Shashua, A. (2010). Norm-product belief propagation: Primal-dual message-passing for approximate inference.

*IEEE Transactions on Information Theory*,

*56*(12), 6294–6316.

MathSciNetCrossRefGoogle ScholarHeskes, T. (2002). Stable fixed points of loopy belief propagation are local minima of the bethe free energy. In *Proceedings of the 15th conference on neural information processing systems*, Vancouver, BC, Canada, December 9–14: Advances in neural information processing systems 15 (NIPS-2002) (pp. 343–350). Curran Associates Inc.

Heskes, T. (2004). On the uniqueness of loopy belief propagation fixed points.

*Neural Computation*,

*16*(11), 2379–2413.

CrossRefMATHGoogle ScholarHorsch, M. C., & Havens, W. S. (2000). Probabilistic arcconsistency: A connection between constraint reasoning andprobabilistic reasoning. In *Proceedings of the sixteenth conferenceon uncertainty in artificial intelligence* (pp. 282–290). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Hsu, E. I., Kitching, M., Bacchus, F., & McIlraith, S. A. (2007). Using expectation maximization to find likely assignments for solving csp’s. In *Proceedings of 22nd national conference on artificial intelligence (AAAI ’07)* (Vol. 22, pp. 224–232). Vancouver, Canada: AAAI Press.

Hsu, E. I., Muise, C., Beck, J. C., & McIlraith, S. A. (2008).Probabilistically estimating backbones and variable bias. In *Proceedings of 14th international conference on principles andpractice of constraint programming (CP ’08)* (pp. 613–617). Sydney, Australia: Springer.

Huynh, T.N., & Mooney, R.J. (2009). Max-margin weight learning for markov logic networks. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Part 1, Bled, Slovenia, September 7-11, Springer. vol. 5781, pp. 564–579.

Huynh, T. N., & Mooney, R. J. (2011). Online max-margin weightlearning for markov logic networks. In *Proceedings of SIAM-11 international conference on data mining* (pp. 642–651). Mesa, AZ: SIAM/Omnipress.

Ibrahim, M. -H., Pal, C., & Pesant, G. (2015). Exploitingdeterminism to scale relational inference. In *Proceedings of the twenty-ninth national conference on artificial intelligence (AAAI’15)*, January 25–30, 2015 (pp. 1756–1762). Austin, TX: AAAI Press.

Kersting, K. (2012). Lifted probabilistic inference. In *Proceedingsof 20th European conference on artificial intelligence (ECAI–2012)*, August 27–31 (pp. 33–38). Montpellier France: IOS Press: ECCAI.

Kersting, K., Ahmadi, B., & Natarajan, S. (2009). Counting belief propagation. In *Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, Montreal, Quebec, June 18–21* (pp. 277–284). AUAI Press.

Kiddon, C., & Domingos, P. (2011). Coarse-to-fine inference and learning for first-order probabilistic models. In *Proceedings of the twenty-fifth AAAI conference on artificial intelligence, San Francisco, CA, USA, August 7–11* (pp. 1049–1056). AAAI Press.

Kok, S., Singla, P., Richardson, M., Domingos, P., Sumner, M., Poon, H., & Lowd, D. (2007).

*The alchemy system for statistical relational AI*. Technical report, Department of Computer Science and Engineering, University of Washington, Seattle, WA.

http://alchemy.cs.washington.edu.

Koller, D., & Friedman, N. (2009).

*Probabilistic graphical models: Principles and techniques*. Cambridge: MIT Press.

MATHGoogle ScholarKschischang, F., Member, S., Frey, B. J., & Loeliger, H.-A. (2001). Factor graphs and the sum-product algorithm.

*IEEE Transactions on Information Theory*,

*47*, 498–519.

MathSciNetCrossRefMATHGoogle ScholarLauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems.

*Journal of the Royal Statistical Society Series B (Methodological)*,

*50*, 157–224.

MathSciNetMATHGoogle ScholarLe Bras, R., Zanarini, A., & Pesant, G. (2009). Efficient genericsearch heuristics within the embp framework. In *Proceedings of the15th international conference on principles and practice of constraint programming (CP’09)*, Lisbon, Portugal (pp. 539–553). Berlin: Springer.

Lowd, D., & Domingos, P. (2007). Efficient weight learning for markov logic networks. In *Proceedings of 11th European conference on principles and practice of knowledge discovery in databases (PKDD 2007)*, Warsaw, Poland, September 17–21 (pp. 200–211). Springer.

Mateescu, R., Kask, K., Gogate, V., & Dechter, R. (2010). Join-graph propagation algorithms.

*Journal of Artificial Intelligence Research*,

*37*, 279–328.

MathSciNetMATHGoogle ScholarMceliece, R. J., Mackay, D. J. C., & Cheng, J.-F. (1998). Turbo decoding as an instance of pearl’s belief propagation algorithm.

*IEEE Journal on Selected Areas in Communications*,

*16*, 140–152.

CrossRefGoogle ScholarMeltzer, T., Globerson, A., & Weiss, Y. (2009). Convergent message passing algorithms—A unifying view. In *Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence*, Montreal, QC, Canada, June 18–21 (pp. 393–401). AUAI Press.

Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., & Kaelbling, L.P. (2008). Lifted probabilistic inference with counting formulas. In *Proceedings of the twenty third conference on artificial intelligence* (Vol. 8, pp. 1062–1068). Chicago, IL: AAAI Press.

Mooij, J. M., & Kappen, H. J. (2005). Sufficient conditions for convergence of loopy belief propagation. In *Proceedings of the 21st annual conference on uncertainty in artificial intelligence (UAI-05)*, Edinburgh, Scotland, July 26-29 (pp. 396–403). AUAI Press.

Murphy, K., Weiss, Y., & Jordan, M. (1999). Loopy beliefpropagation for approximate inference: An empirical study. In *Proceedings of the fifteenth conference annual conference onuncertainty in artificial intelligence (UAI-99)*, Stockholm, Sweden (pp. 467–476). Morgan Kaufmann.

Neal, R. M., & Hinton, G. E. (1999). *Learning in graphical models, MIT Press, chap. A view of the EM algorithm that justifies incremental, sparse, and other variants* (pp. 355–368).

Nguyen, X., Wainwright, M. J., & Jordan, M. I. (2004). Decentralized detection and classification using kernel methods. In *Proceedings of the twenty-first international conference on machine learning, (ICML)* (Vol. 69, pp. 80–88). Banff, Canada: ACM.

Papai, T., Kautz, H. A., & Stefankovic, D. (2012). Slice normalized dynamic markov logic networks. In *Proceedings of 26th conference on neural information processing systems*, December 3–8 Harrahs and Harveys, Lake Tahoe: Advances in Neural Information Processing Systems (Vol. 25, pp. 1916–1924). Curran Associates Inc..

Papai, T., Singla, P., & Kautz, H. (2011). Constraint propagation for efficient inference in markov logic. In *Proceedings of 17th international conference on principles and practice of constraint programming (CP 2011)*, Perugia, Italy, September 12–16 (pp. 691–705). springer.

Pearl, J. (1988).

*Probabilistic reasoning in intelligent systems: Networks of plausible inference*. San Mateo: Morgan Kaufmann.

MATHGoogle ScholarPoole, D. (2003). First-order probabilistic inference. In *Proceedings of the 18th international joint conference on artificial intelligence IJCAI’03* (Vol. 3, pp. 985–991). Acapulco, Mexico: Morgan Kaufmann Publishers Inc.

Poon, H., & Domingos, P. (2006). Sound and efficient inference with probabilistic and deterministic dependencies. In *Proceedings of the 21st national conference on Artificial intelligence*, July 16–20 (Vol. 1, pp. 458–463). Boston, MA: AAAI Press.

Poon, H., Domingos, P., & Sumner, M. (2008). A general method for reducing the complexity of relational inference and its application to mcmc. In *Proceedings of the twenty-third AAAI conference on artificial intelligence*, Chicago, IL, July 13–17 (pp. 1075–1080). AAAI Press.

Potetz, B. (2007). Efficient belief propagation for vision usinglinear constraint nodes. In *Proceeding of IEEE conference oncomputer vision and pattern recognition (CVPR’07)* (pp. 1–8). Minneapolis, MN. IEEE computer society.

Richardson, M., & Domingos, P. (2006). Markov logic networks.

*Machine Learning*,

*62*(1–2), 107–136.

CrossRefGoogle ScholarRoosta, T., Wainwright, M. J., & Sastry, S. S. (2008). Convergence analysis of reweighted sum-product algorithms.

*IEEE Transactions on Signal Processing*,

*56*(9), 4293–4305.

MathSciNetCrossRefGoogle ScholarRossi, F., Van Beek, P., & Walsh, T. (2006).

*Handbook of constraint programming*. New York: Elsevier.

MATHGoogle ScholarSen, P., Deshpande, A., & Getoor, L. (2009). Bisimulation-based approximate lifted inference. In *Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence*, Montreal, Canada, June 18–21.

Shavlik, J., & Natarajan, S. (2009). Speeding up inference inmarkov logic networks by preprocessing to reduce the size of theresulting grounded network. In *Proceedings of the 21 international joint conference on artificial intelligence* (pp. 1951–1956). Pasadena, CA: IJCAI Organization.

Shi, X., Schonfeld, D., & Tuninetti, D. (2010). Message erroranalysis of loopy belief propagation. In *Proceedings of the IEEE international conference on acoustics, speech, and signal processing, (ICASSP 2010)*, March 14–19 (pp. 2078–2081). Dallas, TX: IEEEcomputer society.

Singla, P. (2012). Markov logic networks: Theory, algorithms and applications. In *Proceedings of the 18th international conference on management of data, computer society of India* (pp. 15–150).

Singla, P., & Domingos, P. (2006). Entity resolution with markov logic. In *Proceedings of the sixth international conference on data mining, ICDM’06, Hong Kong, China, 1822 December* (pp. 572–582). IEEE Computer Society.

Singla, P., & Domingos, P. (2008). Lifted first-order belief propagation. In *Proceedings of the twenty-third AAAI conference on artificial intelligence*, Chicago, IL, July 13–17 (pp. 1094–1099). AAAI Press.

Singla, P., Nath, A., & Domingos, P. (2010). Approximate lifted belief propagation. In *Proceedings of the twenty-fourth AAAI conference on artificial intelligence*, Atlanta, Georgia, USA, July 11–15, 2010 (pp. 92–97). AAAI Press.

Smith, D., & Gogate, V. (2014). Loopy belief propagation in the presence of determinism. In *Proceedings of the seventeenth international conference on artificial intelligence and statistics*, April 22–25 (Vol. 33, pp. 895–903). Reykjavik, Iceland:JMLR: W & CP.

Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L. (2011). Lifted probabilistic inference by first-order knowledge compilation. In *Proceedings of the twenty-second international joint conference on artificial intelligence*, Barcelona, Catalonia, Spain, 16–22 July (pp. 2178–2185). AAAI Press.

van Hoeve, W. J., Pesant, G., & Rousseau, L.-M. (2006). On global warming: Flow-based soft global constraints.

*Journal of Heuristics*,

*12*(4–5), 347–373.

CrossRefMATHGoogle ScholarVenugopal, D., & Gogate, V. (2014a). Evidence-based clustering for scalable inference in markov logic. In: *Proceedings of the 7th European conference on machine learning and data mining conference (ECML PKDD 2014)*, Nancy, France, September 15–19 (pp. 258–273). Springer.

Venugopal, D., & Gogate, V.G. (2014b). Scaling-up importance sampling for markov logic networks. In *Proceedings of the 28th conference on neural information processing systems*, 8–13 December, Montreal, Canada: Advances in Neural Information Processing Systems 27 (NIPS 2014) (pp. 2978–2986). Curran Associates Inc.

Wainwright, M., & Jordan, M. (2003). Semidefinite relaxations for approximate inference on graphs with cycles. In *Proceedings of the 17th conference on neural information processing systems: Advances in neural information processing systems 16 (NIPS-2003)* (pp. 369–376). MIT Press.

Wainwright, M., Jaakkola, T., & Willsky, A. (2003). Tree-based reparameterization framework for analysis of sum-product and related algorithms.

*IEEE Transactions on Information Theory*,

*49*(5), 1120–1146.

MathSciNetCrossRefMATHGoogle ScholarWei, W., Erenrich, J., & Selman, B. (2004). Towards efficient sampling: Exploiting random walk strategies. In *Proceedings of the nineteenth national conference on artificial intelligence*, July 25–29 (Vol. 4, pp. 670–676). San Jose, CA: AAAI Press.

Weinman, J. J., Tran, L. C., & Pal, C. J. (2008). Efficientlylearning random fields fo stereo vision with sparse message passing. In *Proceedings of the 10th European conference on computer vision* (pp. 617–630). Marseille, France: Springer.

Winn, J.M. (2004). *Variational message passing and its applications*. PhD thesis, University of Cambridge.

Winn, J. M., & Bishop, C. M. (2005). Variational message passing.

*Journal of Machine Learning Research*,

*6*, 661–694.

MathSciNetMATHGoogle ScholarYeang, C. -H. (2010). Exact loopy belief propagation on euler graphs. In *Proceedings of the 12th international conference on artificial intelligence, Las Vegas, Nevada, USA, July 12–15* (pp. 471–477). CSREA Press.

Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2003). Understanding belief propagation and its generalizations.

*Exploring Artificial Intelligence in the New Millennium*,

*8*, 236–239.

Google ScholarYedidia, J., Freeman, W., & Weiss, Y. (2005). Constructing free-energy approximations and generalized belief propagation algorithms. *IEEE Transactions on Information Theory*, *7*, 2282–2312.

Yuille, A.L. (2001). A double-loop algorithm to minimize the bethe free energy. In *Proceedings of the third international workshop on energy minimization methods in computer vision and pattern recognition*, NRIA Sophia-Antipolis, France, September 3–5 (pp. 3–18). Springer.

Yuille, A. L. (2002). Cccp algorithms to minimize the bethe and kikuchi free energies: Convergent alternatives to belief propagation.

*Neural Computation*,

*14*(7), 1691–1722.

CrossRefMATHGoogle Scholar