Machine Learning

, Volume 61, Issue 1, pp 151–165

A Fast Dual Algorithm for Kernel Logistic Regression

  • S. S. Keerthi
  • K. B. Duan
  • S. K. Shevade
  • A. N. Poo
Article

DOI: 10.1007/s10994-005-0768-5

Cite this article as:
Keerthi, S.S., Duan, K.B., Shevade, S.K. et al. Mach Learn (2005) 61: 151. doi:10.1007/s10994-005-0768-5

Abstract

This paper gives a new iterative algorithm for kernel logistic regression. It is based on the solution of a dual problem using ideas similar to those of the Sequential Minimal Optimization algorithm for Support Vector Machines. Asymptotic convergence of the algorithm is proved. Computational experiments show that the algorithm is robust and fast. The algorithmic ideas can also be used to give a fast dual algorithm for solving the optimization problem arising in the inner loop of Gaussian Process classifiers.

Keywords

classificationlogistic regressionkernel methodsSMO algorithm
Download to read the full article text

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • S. S. Keerthi
    • 1
  • K. B. Duan
    • 2
  • S. K. Shevade
    • 3
  • A. N. Poo
    • 4
  1. 1.Yahoo! Research LabsPasadenaUSA
  2. 2.Control Division, Department of Mechanical EngineeringNational University of SingaporeSingapore
  3. 3.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia
  4. 4.Control Division, Department of Mechanical EngineeringNational University of SingaporeSingapore