Skip to main content
Log in

A Cumulative Strategy to Predict and Characterize Antimicrobial Peptides (AMPs) from Protein Database

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are indivisible part of the innate immune system in invertebrates. AMPs have been proven to have crucial role with a wide range of biological activities, mainly with immunomodulatory and broad spectrum of antimicrobial activity against various pathogens. The unique and salient features of the AMPs show its exceptional nature of therapeutic activity and serves as an alternative agent for conventional antibiotics. The search for potential AMPs persist, as the emergence of multiple drug resistant bacterial strains has been spreading in higher number. Here, the putative antimicrobial peptide sequences were identified from 19,915 sequences of prawn transcriptome and analyzed with various in silico tools such as EXPASY, AMPA, and helical wheel projection and so on. The characteristic antimicrobial properties have been determined for 660 putative AMPs with above mentioned tools. We have demonstrated an efficient bioinformatics approach to derive and analyze the AMPs from the transcriptome data of Macrobrachium rosenbergii. Even though, 660 peptide regions were identified among those five peptide sequences were demonstrated comprehensively with each characteristic property contributes the antimicrobial activity. In this study, we have proposed a rapid and successful protocol that would help to predict AMP in sequential procedure using various in silico methods. Also, we have shown a distinctive method to shortlist the AMPs based on their various physico-chemical properties. Until now, no sequential protocol has been developed to identify and characterize the AMPs from protein database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Arockiaraj J, Kumaresan V, Bhatt P, Palanisamy R, Gnanam AJ, Pasupuleti M, Kasi M, Chaurasia MK (2014) A novel single-domain peptide, anti-LPS factor from prawn: synthesis of peptide, antimicrobial properties and complete molecular characterization. Peptides 53:79–88

    Article  CAS  PubMed  Google Scholar 

  • Arockiaraj J, Chaurasia MK, Kumaresan V, Palanisamy R, Harikrishnan R, Pasupuleti M, Kasi M (2015) Macrobrachium rosenbergii mannose binding lectin: synthesis of MrMBL-N20 and MrMBL-C16 peptides and their antimicrobial characterization, bioinformatics and relative gene expression analysis. Fish Shellfish Immunol 43(2):364–374

    Article  CAS  PubMed  Google Scholar 

  • Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6(12):1543–1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Cameselle JC, Ribeiro JM, Sillero A (1986) Derivation and use of a formula to calculate the net charge of acid-base compounds: its application to amino acids, proteins and nucleotides. Biochem Educ 14(3):131–136

    Article  CAS  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758(9):1184–1202

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia MK, Palanisamy R, Bhatt P, Kumaresan V, Gnanam AJ, Pasupuleti M, Kasi M, Harikrishnan R, Arockiaraj J (2015) A prawn core histone 4: derivation of N-and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription. Microbiol Res 170:78–86

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia MK, Nizam F, Ravichandran G, Arasu MV, Al-Dhabi NA, Arshad A, Elumalai P, Arockiaraj J (2016) Molecular importance of prawn large heat shock proteins 60, 70 and 90. Fish Shellfish Immunol 48:228–238

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51(4):1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachère E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (decapoda). J Biol Chem 272(45):28398–28406

    Article  CAS  PubMed  Google Scholar 

  • Farook M, Raj NS, Madan N, Vimal S, Majeed SA, Taju G, Rajkumar T, Santhoshkumar S, Sivakumar S, Hameed AS (2014) Immunomodulatory effect of recombinant Macrobrachium rosenbergii nodavirus capsid protein (r-MCP) against white tail disease of giant freshwater prawn, Macrobrachium rosenbergii (de man, 1879). Aquaculture 433:395–403

    Article  CAS  Google Scholar 

  • Fernandez DI, Lee TH, Sani MA, Aguilar MI, Separovic F (2013) Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Biophys J 104(7):1495–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimsley GR, Scholtz JM, Pace CN (2009) A summary of the measured pK values of the ionizable groups in folded proteins. Protein Sci 18(1):247–251

    CAS  PubMed  Google Scholar 

  • Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Kullberg BJ, Van Der Lee H, Vasil AI, Hale JD, Mant CT, Hancock RE, Vasil ML, Netea MG, Hodges RS (2008a) Effects of hydrophobicity on the antifungal activity of α-helical antimicrobial peptides. Chem Biol Drug Des 72(6):483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008b) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pept Sci 90(3):369–383

    Article  CAS  Google Scholar 

  • Kastritis PL, Bonvin AM (2013) On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 10(79):20120835

    Article  PubMed  PubMed Central  Google Scholar 

  • Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A (2011) Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS One 6(1):16400

    Article  Google Scholar 

  • Park SC, Park Y, Hahm KS (2011) The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 12(9):5971–5992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Antimicrobial peptides: versatile biological properties. Int J Pept 2013:675391

    Article  PubMed  PubMed Central  Google Scholar 

  • Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29(1):27–43

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Feix JB (2006) Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophys Acta 1758(9):1245–1256

    Article  CAS  PubMed  Google Scholar 

  • Schmidt NW, Wong GC (2013) Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci 17(4):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnapp D, Kemp GD, Smith VJ (1996) Purification and characterization of a proline-rich antibacterial peptide, with sequence similarity to bactenecin-7, from the haemocytes of the shore crab, Carcinus maenas. Eur J Biochem 240(3):532–539

    Article  CAS  PubMed  Google Scholar 

  • Smith VJ, Fernandes JM, Kemp GD, Hauton C (2008) Crustins: enigmatic WAP domain-containing antibacterial proteins from crustaceans. Dev Comp Immunol 32(7):758–772

    Article  CAS  PubMed  Google Scholar 

  • Sperstad SV, Haug T, Paulsen V, Rode TM, Strandskog G, Solem ST, Styrvold OB, Stensvåg K (2009) Characterization of crustins from the hemocytes of the spider crab, Hyas araneus, and the red king crab, Paralithodes camtschaticus. Dev Comp Immunol 33(4):583–591

    Article  CAS  PubMed  Google Scholar 

  • Torrent M, Nogués VM, Boix E (2009) A theoretical approach to spot active regions in antimicrobial proteins. BMC Bioinform 10(1):1

    Article  Google Scholar 

  • Wang G (2010) Database-aided prediction and design of novel antimicrobial peptides. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Eppley Institute, University of Nebraska Medical Center, Omaha, pp 72–81

    Chapter  Google Scholar 

  • Yin LM, Edwards MA, Li J, Yip CM, Deber CM (2012) Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide–membrane interactions. J Biol Chem 287(10):7738–7745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M, Martin B, Chen HC (1988) Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Nat Acad Sci 85(3):910–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding through the Prolific Research Group (PRG-1437-28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesu Arockiaraj.

Ethics declarations

Conflict of interest

Gayathri Ravichandran, Venkatesh Kumaresan, Prasanth Bhatt, Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi and Jesu Arockiaraj declare that they have no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, G., Kumaresan, V., Bhatt, P. et al. A Cumulative Strategy to Predict and Characterize Antimicrobial Peptides (AMPs) from Protein Database. Int J Pept Res Ther 23, 281–290 (2017). https://doi.org/10.1007/s10989-016-9559-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-016-9559-z

Keywords

Navigation