Skip to main content

Advertisement

Log in

Modulating the Antimicrobial Activity of Temporin L Through Introduction of Fluorinated Phenylalanine

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are the promising future therapeutic candidates because of their multifunctional roles and unique mode of action against microbes. Despite several advantages, developing AMPs into therapeutic antibiotics is often associated with limitations, such as thermal and enzymatic stability, moderate antimicrobial activity and higher toxicity. We here report the synthesis of 2-fluoro- and 2,6-difluorophenyalanine, their introduction into naturally occurring antimicrobial peptide Temporin L (TL). We also report the antimicrobial and hemolytic activity of parent TL as well as the fluorinated variant in plasma and buffer conditions. Circular dichroism studies clearly show that fluorination reduces the helical propensity, thus accounting for lower activity. We further demonstrated that fluorinated TL can act as antimicrobial agents in creams and gels used for treating skin infections.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiyelabola T, Ojo I, Adebajo A, Ogunlusi G, Oyetunji O, Akinkunmi E, Adeoye A (2012) Synthesis, characterization and antimicrobial activities of some metal(II) amino acids’ complexes. Adv Biol Chem 2:268–273

    Article  CAS  Google Scholar 

  • Arai T, Maruo N, Sumida Y, Korosue C, Nishino N (1999) Spatially close porphyrin pair linked by the cyclic peptide Gramicidin S. Chem Commun 16:1503–1504

    Article  Google Scholar 

  • Balducci D, Contaldi S, Lazzari I, Porzi G (2009) A highly efficient stereocontrolled synthesis of (S)-2′ 6′-dimethyltyrosine [(S)-DMT]. Tetrahedron Asymmetry 20:1398–1401

    Article  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • de Souza Mendes C, de Souza Antunes A (2013) Pipeline of known chemical classes of antibiotics. Antibiotics 2:500–534

    Article  PubMed  Google Scholar 

  • Godballe T, Nilsson LL, Petersen PD, Jenssen H (2011) Antimicrobial beta-peptides and alpha-peptoids. Chem Biol Drug Des 77:107–116

    Article  CAS  PubMed  Google Scholar 

  • Grieco P et al (2013) The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: identification of a potent anti-Candida peptide. Biochim Biophys Acta 1828:652–660

    Article  CAS  PubMed  Google Scholar 

  • Haney EF, Nazmi K, Bolscher JG, Vogel HJ (2012) Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin. Biochem Cell Biol 90:362–377

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Vasil AI, Hale J, Hancock RE, Vasil ML, Hodges RS (2009) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Adv Exp Med Biol 611:561–562

    Article  CAS  PubMed  Google Scholar 

  • Konai MM, Ghosh C, Yarlagadda V, Samaddar S, Haldar J (2014) Membrane active phenylalanine conjugated lipophilic norspermidine derivatives with selective antibacterial activity. J Med Chem 57:9409–9423

    Article  CAS  PubMed  Google Scholar 

  • Lai JR, Epand RF, Weisblum B, Epand RM, Gellman SH (2006) Roles of salt and conformation in the biological and physicochemical behavior of protegrin-1 and designed analogues: correlation of antimicrobial, hemolytic, and lipid bilayer-perturbing activities. Biochemistry 45:15718–15730

    Article  CAS  PubMed  Google Scholar 

  • Lee E et al (2014) Role of phenylalanine and valine10 residues in the antimicrobial activity and cytotoxicity of piscidin-1. PLoS One 9:e114453

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehrer RI, Barton A, Ganz T (1988) Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. J Immunol Methods 108:153–158

    Article  CAS  PubMed  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387

    Article  CAS  PubMed  Google Scholar 

  • Loureiro JA et al (2014) Fluorinated beta-sheet breaker peptides. J Mater Chem 2:2259–2264

    Article  CAS  Google Scholar 

  • Mae M, Amii H, Uneyama K (2000) First synthesis of 3,3-difluoroserine and cysteine derivatives via Mg(0)-promoted selective Cî—¸F bond cleavage of trifluoromethylimines. Tetrahedron Lett 41:7893–7896

    Article  CAS  Google Scholar 

  • Mahalka AK, Kinnunen PK (2009) Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L. Biochim Biophys Acta 1788:1600–1609

    Article  CAS  PubMed  Google Scholar 

  • Maisetta G et al (2013) pH-dependent disruption of Escherichia coli ATCC 25922 and model membranes by the human antimicrobial peptides hepcidin 20 and 25. FEBS J 280:2842–2854

    Article  CAS  PubMed  Google Scholar 

  • Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A (2011) Highly selective end-tagged antimicrobial peptides derived from PRELP. PLoS One 6:e16400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangoni ML et al (2011) Structure-activity relationship, conformational and biological studies of temporin L analogues. J Med Chem 54:1298–1307

    Article  CAS  PubMed  Google Scholar 

  • McCloskey AP, Gilmore BF, Laverty G (2014) Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 3:791–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng H, Kumar K (2007) Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc 129:15615–15622

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Krishnaji ST, Beinborn M, Kumar K (2008) Influence of selective fluorination on the biological activity and proteolytic stability of glucagon-like peptide-1. J Med Chem 51:7303–7307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer DK, O’Neil DA (2013) Peptides as the next generation of anti-infectives. Future Med Chem 5:315–337

    Article  CAS  PubMed  Google Scholar 

  • Molhoek EM et al (2010) Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents. Int J Antimicrob Agents 36:271–274

    Article  CAS  PubMed  Google Scholar 

  • Moncla BJ, Pryke K, Rohan LC, Graebing PW (2011) Degradation of naturally occurring and engineered antimicrobial peptides by proteases. Adv Biosci Biotechnol 2:404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemz A, Tirrell DA (2001) Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 123:7407–7413

    Article  CAS  PubMed  Google Scholar 

  • Pal T, Sonnevend A, Galadari S, Conlon JM (2005) Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2. Regul Pept 129:85–91

    Article  CAS  PubMed  Google Scholar 

  • Pandurangan K, Kitchen JA, Blasco S, Paradisi F, Gunnlaugsson T (2014) Supramolecular pyridyl urea gels as soft matter with antibacterial properties against MRSA and/or E. coli. Chem Commun (Camb) 50:10819–10822

    Article  CAS  Google Scholar 

  • Papareddy P et al (2010) Proteolysis of human thrombin generates novel host defense peptides. PLoS Pathog 6:e1000857

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasupuleti M, Walse B, Nordahl EA, Morgelin M, Malmsten M, Schmidtchen A (2007) Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem 282:2520–2528

    Article  CAS  PubMed  Google Scholar 

  • Pasupuleti M, Walse B, Svensson B, Malmsten M, Schmidtchen A (2008) Rational design of antimicrobial C3a analogues with enhanced effects against staphylococci using an integrated structure and function-based approach. Biochemistry 47:9057–9070

    Article  CAS  PubMed  Google Scholar 

  • Pasupuleti M, Chalupka A, Morgelin M, Schmidtchen A, Malmsten M (2009a) Tryptophan end-tagging of antimicrobial peptides for increased potency against Pseudomonas aeruginosa. Biochim Biophys Acta 1790:800–808

    Article  CAS  PubMed  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009b) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS ONE 4:e5285

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171

    Article  CAS  PubMed  Google Scholar 

  • Salwiczek M, Nyakatura EK, Gerling UI, Ye S, Koksch B (2012) Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions. Chem Soc Rev 41:2135–2171

    Article  CAS  PubMed  Google Scholar 

  • Saviello MR, Malfi S, Campiglia P, Cavalli A, Grieco P, Novellino E, Carotenuto A (2010) New insight into the mechanism of action of the temporin antimicrobial peptides. Biochemistry 49:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Schmidtchen A, Pasupuleti M, Morgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M (2009) Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem 284:17584–17594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidtchen A, Pasupuleti M, Malmsten M (2014) Effect of hydrophobic modifications in antimicrobial peptides. Adv Colloid Interface Sci 205:265–274

    Article  CAS  PubMed  Google Scholar 

  • Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M (2009) Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 53:593–602

    Article  PubMed  Google Scholar 

  • Subbaiah CS, Haq W (2014) Efficient stereocontrolled synthesis of sitagliptin phosphate. Tetrahedron Asymmetry 25:1026–1030

    Article  CAS  Google Scholar 

  • Thirumalai MK, Roy A, Sanikommu S, Arockiaraj J, Pasupuleti M (2014) A simple, robust enzymatic-based high-throughput screening method for antimicrobial peptides discovery against Escherichia coli. J Pept Sci 20:341–348

    Article  CAS  PubMed  Google Scholar 

  • Waters ML (2002) Aromatic interactions in model systems. Curr Opin Chem Biol 6:736–741

    Article  CAS  PubMed  Google Scholar 

  • Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  PubMed  Google Scholar 

  • Wolny M, Batchelor M, Knight PJ, Paci E, Dougan L, Peckham M (2014) Stable single alpha-helices are constant force springs in proteins. J Biol Chem 289:27825–27835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeaman MR, Gank KD, Bayer AS, Brass EP (2002) Synthetic peptides that exert antimicrobial activities in whole blood and blood-derived matrices. Antimicrob Agents Chemother 46:3883–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaknoon F, Goldberg K, Sarig H, Epand RF, Epand RM, Mor A (2012) Antibacterial properties of an oligo-acyl-lysyl hexamer targeting Gram-negative species. Antimicrob Agents Chemother 56:4827–4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

C.S.S. and S.H thanks UGC for award of senior and junior research fellowship respectively. The authors gratefully acknowledge the SAIF Division of CSIR-CDRI for providing the spectroscopic data. Dr M.P. thank the Director, Central Drug Research Institute (CDRI), Lucknow, and SERB, DST India, for his encouragement and providing the seed money to establish the lab and carry out the work. This manuscript has CDRI Communication No.56/2015/WH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mukesh Pasupuleti or Wahajul Haq.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain studies with human or animal subjects. However, human blood was used in the hemolysis studies for which, Institutional human ethical committee, CSIR-CDRI, Lucknow, has approved the use of human blood for the experiments (CDRI/IEC/2014/A1). Written informed consent was obtained from the all the blood donor. For the pig skin experiment, the required skin was collected from the adult male animals, which were sacrificed for human consumption at local slaughter house. As the animals were not housed for the experimental purpose, no animal ethical permission was needed as per Indian animal ethics code.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setty, S.C., Horam, S., Pasupuleti, M. et al. Modulating the Antimicrobial Activity of Temporin L Through Introduction of Fluorinated Phenylalanine. Int J Pept Res Ther 23, 213–225 (2017). https://doi.org/10.1007/s10989-016-9553-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-016-9553-5

Keywords

Navigation