Skip to main content

Advertisement

Log in

Inhibition of Pore Formation by Blocking the Assembly of Staphylococcus aureus α-Hemolysin Through a Novel Peptide Inhibitor: an In Silco Approach

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Staphylococcus aureus self-assembling α-hemolysin heptamer is an acute virulence factor that determines the severity of S. aureus infections. Hence, inhibiting the heptamer formation is of considerable interest. However, both natural and chemical inhibitors reported so far has difficulties related to toxicity, bioavailability, and solubility, which necessitate in identifying some alternatives. Hence, in this study, potential peptides for α-hemolysin inhibition was developed using in silico based approach. Haddock server was used to understand the residues involved in complex formation. Based on the key residues involved in the interaction, 20 peptides were designed and docked with the α-hemolysin monomer (Chain A). Further, the best scored Chain A-peptide complex was chosen and docked with Chain B to identify the ability of dimer formation in the presence of designed peptide. The stability of the Chain A–B dimer, Chain A-peptide and Chain A-peptide-Chain B complex was studied by performing molecular dynamic simulation over 3,000 ps. The peptide IYGSKANRQTDK was found to be binding efficiently with Chain A of α-hemolysin with highest binding energy and also revealed that the designed peptide disturbed the dimer formation, which provided useful information in developing promising lead for inhibiting α-hemolysin assembly in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accelrys Software Inc (2003) Discovery studio modeling environment, Release 3.1. Accelrys Software Inc, San Diego

    Google Scholar 

  • Bantel H, Sinha B, Domschke W, Peters G, Schulze-Osthoff K, Janicke RU (2001) alpha-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J Cell Biol 155:637–648. doi:10.1083/jcb.200105081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berendsen HJ, Postma J, Van Gunsteren W, Hermans J (1981) Interaction models for water in relation to protein hydration. Intermolecular forces. Springer, Amsterdam, pp 331–342

    Chapter  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81:136–147. doi:10.1111/cbdd.12055

    Article  PubMed  CAS  Google Scholar 

  • de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897. doi:10.1038/nprot.2010.32

    Article  PubMed  Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system

  • Deshmukh R, Purohit HJ (2012) Peptide scaffolds: flexible molecular structures with diverse therapeutic potentials. Int J Pept Res Ther 18:125–143

    Article  CAS  Google Scholar 

  • Gouaux E (1998) Alpha-Hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins. J Struct Biol 121:110–122. doi:10.1006/jsbi.1998.3959

    Article  PubMed  CAS  Google Scholar 

  • Gray GS, Kehoe M (1984) Primary sequence of the alpha-toxin gene from Staphylococcus aureus wood 46. Infect Immun 46:615–618

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  • Jayasinghe L, Miles G, Bayley H (2006) Role of the amino latch of staphylococcal alpha-hemolysin in pore formation: a co-operative interaction between the N terminus and position 217. J Biol Chem 281:2195–2204. doi:10.1074/jbc.M510841200

    Article  PubMed  CAS  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652. doi:10.1038/nsb0902-646

    Article  PubMed  CAS  Google Scholar 

  • Kelly CG, Lehner T (2007) Peptide inhibitors of Streptococcus mutans in the control of dental caries. Int J Pept Res Ther 13:517–523

    Article  CAS  Google Scholar 

  • Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  PubMed  CAS  Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44:235–249

    Article  PubMed  CAS  Google Scholar 

  • Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:W590–594. doi:10.1093/nar/gkh477

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maupetit J, Derreumaux P, Tuffery P (2010) A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem 31:726–738. doi:10.1002/jcc.21365

    PubMed  CAS  Google Scholar 

  • Menestrina G, Serra MD, Prevost G (2001) Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39:1661–1672

    Article  PubMed  CAS  Google Scholar 

  • Menzies BE, Kernodle DS (1994) Site-directed mutagenesis of the alpha-toxin gene of Staphylococcus aureus: role of histidines in toxin activity in vitro and in a murine model. Infect Immun 62:1843–1847

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N (2009) The structure of a cytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 459:726–730. doi:10.1038/nature08026

    Article  PubMed  CAS  Google Scholar 

  • Pr Bjelkmar, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6:459–466

    Article  Google Scholar 

  • Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Tweten RK, Christianson KK, Iandolo JJ (1983) Transport and processing of staphylococcal alpha-toxin. J Bacteriol 156:524–528

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valeva A, Weisser A, Walker B, Kehoe M, Bayley H, Bhakdi S, Palmer M (1996) Molecular architecture of a toxin pore: a 15-residue sequence lines the transmembrane channel of staphylococcal alpha-toxin. EMBO J 15:1857–1864

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vandenesch F, Lina G, Henry T (2012) Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell infect Microbiol 2:12. doi:10.3389/fcimb.2012.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15:40–56. doi:10.1016/j.drudis.2009.10.009

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K et al (2011) Crystal structure of the octameric pore of staphylococcal gamma-hemolysin reveals the beta-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA 108:17314–17319. doi:10.1073/pnas.1110402108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

Saravanan Vijayakumar is supported by the DBT-BINC senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. V. Lakshmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, N., Saravanan, V., Lakshmi, P.T.V. et al. Inhibition of Pore Formation by Blocking the Assembly of Staphylococcus aureus α-Hemolysin Through a Novel Peptide Inhibitor: an In Silco Approach. Int J Pept Res Ther 20, 575–583 (2014). https://doi.org/10.1007/s10989-014-9424-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-014-9424-x

Keywords

Navigation