Skip to main content

Advertisement

Log in

Semicarbazide Substitution Enhances Enkephalins Resistance to Ace Induced Hydrolysis

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

In our previous study on [Met5]-enkephalin analogues, [Met5]-enkephalin semicarbazide was found as a new enkephalin amide that produces antinociception even in ACE (Angiotensin Converting Enzyme) exposure in vivo. In the present work we examined the corresponding [Leu5]-enkephalin derivatives to confirm the influence of semicarbazide substitution. To prevent the enkephalins biodegradation animals were pretreated with a mixture of peptidase inhibitors. As assessed by tail-flick test no significant difference was detected between the produced antinociception by the [Leu5]-enkephalin derivatives. Based on our results both semicarbazide and ethylamide groups could preserve the provided analgesia after captopril (ACE inhibitor) omission from the peptidase inhibitors mixture. This work confirms that semicarbazide substitution on enkephalins yields ACE resistance antinociceptive peptides, nevertheless it may necessarily not enhance the peptides analgesic potencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Akahori K, Kosaka K, Jin XL, Arai Y, Yoshikawa M, Kobayashi H, Oka T (2008) Great increase in antinociceptive potency of [Leu 5]enkephalin after peptidase inhibition. J Pharmacol Sci 106:295–300

    Article  PubMed  CAS  Google Scholar 

  • Arabanian A, Mohammadnejad M, Balalaie S (2010) A novel and efficient approach for the amidation of C-terminal peptides. J Iran Chem Soc 7:840–845

    Article  CAS  Google Scholar 

  • Boudinot E, Morin-Surun MP, Foutz AS, Fournié-Zaluski MC, Roques BP, Denavit-Saubié M (2001) Effects of the potent analgesic enkephalin-catabolizing enzyme inhibitors RB101 and kelatorphan on respiration. Pain 90:7–13

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Song B, Lao L, Pérez OA, Kim W, Marvizón JCG (2007) Comparing analgesia and [mu]-opioid receptor internalization produced by intrathecal enkephalin: requirement for peptidase inhibition. Neuropharmacology 53:664–676

    Article  PubMed  CAS  Google Scholar 

  • Chipkin RE, Morris DH, English MG, Rosamond JD, Stammer CH, York EJ, Stewart JM (1981) Potent tetrapeptide enkephalins. Life Sci 28:1517–1522

    Article  PubMed  CAS  Google Scholar 

  • Corvol P, Williams TA, Soubrier F (1995) [18] Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol 248:283–305

    Article  PubMed  CAS  Google Scholar 

  • D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79

    Google Scholar 

  • Erdös E (1990) Angiotensin I converting enzyme and the changes in our concepts through the years. Hypertension 16:363–370 Lewis K. Dahl memorial lecture

    Article  PubMed  Google Scholar 

  • Erdos E, Skidgel R (1986) The unusual substrate specificity and the distribution of human angiotensin I converting enzyme. Hypertension 8(I):34–37

    Google Scholar 

  • Ghoda K, Iwao K, Liu XF, Taniguchi T, Oka T (1995) The in vitro and in vivo resistance of synthetic enkephalin analogs to three enkephalin-hydrolyzing enzymes. Regul Pept 59:87–96

    Article  PubMed  CAS  Google Scholar 

  • Gupta Y, Chugh A, Arora S, Seth S (1991) Modulation of morphine induced antinociception by intracerebroventricularly administered captopril. Indian J Exp Biol 29:543–545

    PubMed  CAS  Google Scholar 

  • Hiranuma T, Iwao K, Kitamura K, Matsumiya T, Oka T (1997) Almost complete protection from [Met5]-enkephalin-Arg6-Gly7-Leu8 (Met-enk-RGL) hydrolysis in membrane preparations by the combination of amastatin, captopril and phosphoramidon. J Pharmacol Exp Ther 281:769–274

    Google Scholar 

  • Houard X, Williams TA, Michaud A, Dani P, Isaac RE, Shirras AD, Coates D, Corvol P (1998) The Drosophila melanogaster related angiotensin I converting enzymes Acer and Ance. Eur J Biochem 257:599–606

    Article  PubMed  CAS  Google Scholar 

  • Kanai M, Takahashi S, Kosaka K, Iwao K, Kobayashi H, Oka T (2002) [Met5] enkephalin–Arg–Gly–Leu-induced antinociception is greatly increased by peptidase inhibitors. Eur J Pharmacol 453:53–58

    Article  PubMed  CAS  Google Scholar 

  • Kedlaya D, Reynolds L, Waldman S (2002) Epidural and intrathecal analgesia for cancer pain. Best Pract Res Clin Anaesthesiol 16:651–665

    Article  PubMed  Google Scholar 

  • Kitamura K, Akahori K, Yano H, Iwao K, Oka T (2000) Effects of peptidase inhibitors on anti-nociceptive action of dynorphin-(1-8) in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 36:273–278

    Article  Google Scholar 

  • Lamango NS, Sajid M, Isaac RE (1996) The endopeptidase activity and the activation by Cl-of angiotensin-converting enzyme is evolutionarily conserved: purification and properties of an angiotensin-converting enzyme from the housefly, Musca domestica. Biochem J 314:639–646

    PubMed  CAS  Google Scholar 

  • Lantz I, Nyberg F, Terenius L (1991) Molecular heterogeneity of angiotensin converting enzyme in human cerebrospinal fluid. Biochem Int 23:941–948

    PubMed  CAS  Google Scholar 

  • Ling N, Guillemin R (1976) Morphinomimetic activity of synthetic fragments of beta-lipotropin and analogs. Proc Natl Acad Sci 73:3308–3310

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Feger J, Fournie-Zaluski M, Roques B (1990) Differences in physical dependence induced by selective [mu] or [delta] opioid agonists and by endogenous enkephalins protected by peptidase inhibitors. Brain Res 520:247–254

    Article  PubMed  CAS  Google Scholar 

  • Malfroy B, Schwartz JC (1985) Comparison of dipeptidyl carboxypeptidase and endopeptidase activities in the three enkephalin-hydrolysing metallopeptidases. Biochem Biophys Res Commun 130:372–378

    Article  PubMed  CAS  Google Scholar 

  • Noble F, Roques BP (2007) Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Target 11:145–159

    Article  CAS  Google Scholar 

  • Norman J, Autry W, Barbaz B (1985) Angiotensin-converting enzyme inhibitors potentiate the analgesic activity of [Met]-enkephalin-Arg6-Phe7 by inhibiting its degradation in mouse brain. Mol Pharmacol 28:521–526

    PubMed  CAS  Google Scholar 

  • Ortega-Alvaro A, Chover-Gonzalez AJ, Lai-Kuen R, Mico JA, Gibert-Rahola J, Fournié-Zaluski MC, Roques BP, Maldonado R (1998) Antinociception produced by the peptidase inhibitor, RB 101, in rats with adrenal medullary transplant into the spinal cord. Eur J Pharmacol 356:139–148

    Article  PubMed  CAS  Google Scholar 

  • Paronis CA, Holtzman SG (1991) Increased analgesic potency of mu agonists after continuous naloxone infusion in rats. J Pharmacol Exp Ther 259:582–589

    PubMed  CAS  Google Scholar 

  • Rezaee Z, Arabanian SA, Balalaie S, Ahmadiani A, Khalaj L, Nasoohi S (2012) Antinociceptive effect of [Met5] enkephalin semicarbazide is not affected by dipeptidyl carboxypeptidase I. J Pept Sci 18:92–96

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez R, Reig F, Valencia G, Herrero J, Garcia Anton J (1986) Biological activity of Leu-enkephalin containing hydrophobic moieties. Neuropeptides 8:335–349

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JC, Malfroy B, De La Baume S (1981) Biological inactivation of enkephalins and the role of enkephalin-dipeptidyl-carboxypeptidase. Life Sci 29:1715–1740

    Article  PubMed  CAS  Google Scholar 

  • Song B, Marvizón JCG (2003) Peptidases prevent μ-opioid receptor internalization in dorsal horn neurons by endogenously released opioids. J Neurosci 23:1847–1858

    PubMed  CAS  Google Scholar 

  • Taniguchi T, Fan XT, Kitamura K, Oka T (1998) Effects of peptidase inhibitors on the enkephalin-induced anti-nociception in rats. Jpn J Pharmacol 78:487–492

    Article  PubMed  CAS  Google Scholar 

  • Tölle TR, Schadrack J, Castro-Lopes JM, Evan G, Roques BP, Zieglgänsberger W (1994) Effects of Kelatorphan and morphine before and after noxious stimulation on immediate-early gene expression in rat spinal cord neurons. Pain 56:103–112

    Article  PubMed  Google Scholar 

  • Tóth F, Farkas J, Tóth G, Wollemann M, Borsodi A, Benyhe S (2003) Synthesis and binding characteristics of a novel enkephalin analogue, [< sup > 3 </sup > H] Tyr-d-Ala-Gly-Phe-d-Nle-Arg-Phe. Peptides 24:1433–1440

    Article  PubMed  Google Scholar 

  • Watkins R, Vemulapalli S, Chiu P, Foster C, Smith E, Neustadt B, Haslanger M, Sybertz E (1993) Atrial natriuretic factor potentiating and hemodynamic effects of SCH 42495, a new, neutral metalloendopeptidase inhibitor. Am J Hypertens 6:357–368

    PubMed  CAS  Google Scholar 

  • Yaksh TL, Rudy TA (1976) Chronic catheterization of the spinal subarachnoid space. Physiol Behav 17:1031–1036

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanaz Nasoohi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaee, Z., Arabanian, A., Balalaie, S. et al. Semicarbazide Substitution Enhances Enkephalins Resistance to Ace Induced Hydrolysis. Int J Pept Res Ther 18, 305–309 (2012). https://doi.org/10.1007/s10989-012-9306-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-012-9306-z

Keywords

Navigation