Skip to main content

Advertisement

Log in

Soluble Glycosaminoglycans Inhibit the Interaction of TAT−PTD with Lipid Vesicles

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Several models have been proposed for translocation of cell-penetrating peptides across membranes, but no general consensus on the mechanism of this process has emerged. It was hypothesized that heparan sulfate on the cell surface may play a role. We used fluorescence spectroscopy to study the effect of three soluble glycosaminoglycans—heparan sulfate, low-molecular-weight heparin, and dermatan sulfate—on the interaction of the fluorescently labeled peptide TAT−PTD with negatively charged small unilamellar vesicles. We found that the presence of glycosaminoglycans results in an order-of-magnitude increase in the apparent dissociation constant K d of the electrostatic component of the peptide/membrane interaction (from 0.13 to 2.6 mM). Thus, rather than aiding in the peptide’s penetration, soluble glycosaminoglycans competitively decrease TAT−PTD’s binding to the membrane, presumably by neutralizing its charge, and thereby attenuating electrostatic forces involved in the interaction. Our results, however, do not exclude a possible role of membrane-anchored glycosaminoglycans in the endocytotic transduction of CPPs across the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aris A, Villaverde A (2003) Engineering nuclear localization signals in modular protein vehicles for gene therapy. Biochem Biophys Res Commun 304:625–631

    Article  PubMed  CAS  Google Scholar 

  • Barany-Wallje E, Keller S, Serowy S, Geibel S, Pohl P, Bienert M, Dathe M (2005) A critical reassessment of penetratin translocation across lipid membranes. Biophys J 89:2513–2521

    Article  PubMed  CAS  Google Scholar 

  • Belting M (2003) Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci 28:145–151

    Article  PubMed  CAS  Google Scholar 

  • Bielinska A, Kukowska-Latallo JF, Johnson J, Tomalia DA, Baker JR Jr (1996) Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res 24:2176–2182

    Article  PubMed  CAS  Google Scholar 

  • Butko P, Huang F, Pusztai-Carey M, Surewicz WK (1996) Membrane permeabilization induced by cytolytic delta-endotoxin CytA from Bacillus thuringiensis var. israelensis. Biochemistry 35:11355–11360

    Article  PubMed  CAS  Google Scholar 

  • Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A (1996) Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem 271:18188–18193

    Article  PubMed  CAS  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  • Hitz T, Iten R, Gardiner J, Namoto K, Walde P, Seebach D (2006) Interaction of alpha and beta-oligoarginine-acids and amides with anionic lipid vesicles: a mechanistic and thermodynamic study. Biochemistry 45:5817–5829

    Article  PubMed  CAS  Google Scholar 

  • Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–253

    Article  PubMed  CAS  Google Scholar 

  • Klein D, Mendoza V, Pileggi A, Molano RD, Barbe-Tuana FM, Inverardi L, Ricordi C, Pastori RL (2005) Delivery of TAT/PTD-fused proteins/peptides to islets via pancreatic duct. Cell Transplant 14:241–248

    Article  PubMed  Google Scholar 

  • Kramer SD, Wunderli-Allenspach H (2003) No entry for TAT(44–57) into liposomes and intact MDCK cells: novel approach to study membrane permeation of cell-penetrating peptides. Biochim Biophys Acta 1609:161–169

    Article  PubMed  CAS  Google Scholar 

  • Kukowska-Latallo JF, Raczka E, Quintana A, Chen C, Rymaszewski M, Baker JR Jr (2000) Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther 11:1385–1395

    Article  PubMed  CAS  Google Scholar 

  • Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  PubMed  CAS  Google Scholar 

  • Lundberg M, Johansson M (2002) Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 291:367–371

    Article  PubMed  CAS  Google Scholar 

  • Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414:127–139

    Article  PubMed  CAS  Google Scholar 

  • Ozaki D, Sudo K, Asoh S, Yamagata K, Ito H, Ohta S (2004) Transduction of anti-apoptotic proteins into chondrocytes in cartilage slice culture. Biochem Biophys Res Commun 313:522–527

    Article  PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280:15300–15306

    Article  PubMed  CAS  Google Scholar 

  • Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  PubMed  CAS  Google Scholar 

  • Sandgren S, Cheng F, Belting M (2002) Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem 277:38877–38883

    Article  PubMed  CAS  Google Scholar 

  • Silhol M, Tyagi M, Giacca M, Lebleu B, Vives E (2002) Different mechanisms for cellular internalization of the HIV–1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem 269:494–501

    Article  PubMed  CAS  Google Scholar 

  • Thoren PE, Persson D, Isakson P, Goksor M, Onfelt A, Norden B (2003) Uptake of analogs of penetratin, Tat(48–60) and oligoarginine in live cells. Biochem Biophys Res Commun 307:100–107

    Article  PubMed  CAS  Google Scholar 

  • Tiriveedhi V, Butko P (2007) A fluorescence spectroscopy study on the interactions of the TAT−PTD peptide with model lipid membranes. Biochemistry 46:3888–3895

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791

    Article  PubMed  CAS  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    Article  PubMed  CAS  Google Scholar 

  • Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  CAS  Google Scholar 

  • Vives E, Richard JP, Rispal C, Lebleu B (2003) TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci 4:125–132

    Article  PubMed  CAS  Google Scholar 

  • Zhuo RX, Du B, Lu ZR (1999) In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J Control Release 57:249–257

    Article  PubMed  CAS  Google Scholar 

  • Ziady AG, Ferkol T, Gerken T, Dawson DV, Perlmutter DH, Davis PB (1998) Ligand substitution of receptor targeted DNA complexes affects gene transfer into hepatoma cells. Gene Ther 5:1685–1697

    Article  PubMed  CAS  Google Scholar 

  • Ziegler A, Blatter XL, Seelig A, Seelig J (2003) Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Biochemistry 42:9185–9194

    Article  PubMed  CAS  Google Scholar 

  • Ziegler A, Seelig J (2004) Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters. Biophys J 86:254–263

    Article  PubMed  CAS  Google Scholar 

  • Ziegler A, Seelig J (2008) Binding and clustering of glycosaminoglycans: a common property of mono- and multivalent cell-penetrating compounds. Biophys J 94:2142–2149

    Article  PubMed  CAS  Google Scholar 

  • Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57:529–545

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Butko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiriveedhi, V., Butko, P. Soluble Glycosaminoglycans Inhibit the Interaction of TAT−PTD with Lipid Vesicles. Int J Pept Res Ther 14, 209–214 (2008). https://doi.org/10.1007/s10989-008-9131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-008-9131-6

Keywords

Navigation