Skip to main content
Log in

Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees.

Objectives

Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations.

Methods

Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7, 23.5 and 28.8% of agricultural land converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape.

Results

Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale.

Conclusions

Strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcamo J (2008) Environmental futures the practice of environmental scenario analysis. Elsevier, Amsterdam

    Google Scholar 

  • Bailey D, Billeter R, Aviron S, Schweiger O, Herzog F (2007) The influence of thematic resolution on metric selection for biodiversity monitoring in agricultural landscapes. Landscape Ecol 22:461–473.

    Article  Google Scholar 

  • Bennett AB, Isaacs R (2014) Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agric Ecosyst Environ 193:1–8.

    Article  Google Scholar 

  • Bennett AB, Meehan TD, Gratton C, Isaacs R (2014) Modeling pollinator community response to contrasting bioenergy scenarios. PLoS ONE 9:e110676.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentrup G (2008) Conservation buffers: design guidelines for buffers, corridors, and greenways. U.S. Department of Agriculture, Asheville

    Google Scholar 

  • Chensheng L, Warchol KM, Callahan RA (2014) Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bull Insectol 67:125–130

    Google Scholar 

  • Das S, Priess JA, Schweitzer C (2012) Modelling regional scale biofuel scenarios—a case study for India. Glob Chang Biol Bioenergy 4:176–192

    Article  Google Scholar 

  • Deguines N, Jono C, Baude M, Henry M, Julliard R, Fontaine C (2014) Large-scale trade-off between agricultural intensification and crop pollination services. Front Ecol Environ 12:212–217

    Article  Google Scholar 

  • Douglas MR, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in U.S. field crops. Environ Sci Technol. doi:10.1021/es506141g

    PubMed Central  Google Scholar 

  • Etherington TR, Holland EP, O’Sullivan D (2015) NLMpy: a python software package for the creation of neutral landscape models within a general numerical framework. Methods Ecol Evol 6:164–168

    Article  Google Scholar 

  • Graham JB (2016) Working landscapes: transdisciplinary research on bioenergy and agroforestry alternatives for an Illinois watershed. University of Michigan

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Grixti JC, Wong LT, Cameron SA, Favret C (2009) Decline of bumble bees (Bombus) in the North American Midwest. Biol Conserv 142:75–84

    Article  Google Scholar 

  • Hamada Y, Ssegane H, Negri MC (2015) Mapping intra-field yield variation using high resolution satellite imagery to integrate bioenergy and environmental stewardship in an agricultural watershed. Remote Sens 7:9753–9768

  • Heard MS, Carvell C, Carreck NL, Rothery P, Osborne JL, Bourke AF (2007) Landscape context not patch size determines bumble-bee density on flower mixtures sown for agri-environment schemes. Biol Lett 3:638–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecol 24:547–555

    Article  Google Scholar 

  • Jin Y, Yang L, Danielson P, Homer C, Fry J, Xian G (2013) A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sens Environ 132:159–175

    Article  Google Scholar 

  • Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (2011) Natural capital: theory and practice of mapping ecosystem services. Oxford University Press, New York

    Book  Google Scholar 

  • Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D, Carvalheiro LG (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599

    Article  PubMed  Google Scholar 

  • Klein A-M, Brittain C, Hendrix SD, Thorp R, Williams N, Kremen C (2012) Wild pollination services to California almond rely on semi-natural habitat. J Appl Ecol. doi:10.1111/j.1365-2664.2012.02144.x

    Google Scholar 

  • Koh I, Lonsdorf EV, Williams NM, Brittain C, Isaacs R, Gibbs J, Ricketts TH (2016) Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc Natl Acad Sci USA 113:140–145

    Article  CAS  PubMed  Google Scholar 

  • Kremen C, M’Gonigle LK (2015) Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J Appl Ecol 52:602–610

    Article  Google Scholar 

  • Lonsdorf E, Kremen C, Ricketts T, Winfree R, Williams N, Greenleaf S (2009) Modelling pollination services across agricultural landscapes. Ann Bot 103:1589–1600

    Article  PubMed  PubMed Central  Google Scholar 

  • Lonsdorf E, Ricketts T, Kremen C, Winfree R, Greenleaf S, Williams N (2011) Crop pollination services. In: Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (eds) Natural capital: theory and practice of mapping ecosystem services. Oxford University Press, New York, pp 168–187

    Chapter  Google Scholar 

  • M’Gonigle LK, Ponisio LC, Cutler K, Kremen C (2015) Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol Appl 25:1557–1565

    Article  PubMed  Google Scholar 

  • Mallinger RE, Gibbs J, Gratton C (2016) Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods. Landsc Ecol. doi:10.1007/s10980-015-0332-z

    Google Scholar 

  • McGarigal K (2015) FRAGSTATS help.

  • McGarigal K, Ene E (2013) Fragstats.

  • Meehan TD, Gratton C, Diehl E, Hunt ND, Mooney DF, Ventura SJ, Barham BL, Jackson RD (2013) Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest. PLoS ONE 8:e80093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morandin LA, Kremen C (2013) Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol Appl 23:829–839

    Article  PubMed  Google Scholar 

  • Nassauer JI, Corry RC (2004) Using normative scenarios in landscape ecology. Landsc Ecol 19:343–356

    Article  Google Scholar 

  • Olsson O, Bolin A, Smith HG, Lonsdorf EV (2015) Modeling pollinating bee visitation rates in heterogeneous landscapes from foraging theory. Ecol Modell 316:133–143

    Article  Google Scholar 

  • Ostaff DP, Mosseler A, Johns RC, Javorek S, Klymko J, Ascher JS (2015) Willows (Salix spp.) as pollen and nectar sources for sustaining fruit and berry pollinating insects. Can J Plant Sci 95:505–516

    Article  Google Scholar 

  • Pollinator Health Task Force (2015) National strategy to promote the health of honey bees and other pollinators. Washington, DC

  • Ponisio LC, M’Gonigle LK, Kremen C (2016) On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob Chang Biol 22:704–715

    Article  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing.

  • Ridgeway A, Wen A, Elgersma K (2015) Density and diversity of bees in the Midwestern agricultural landscape: influence of surrounding agricultural land use and biofuel candidate crops. Ecol Sci Front Celebr, ESA Centen

    Google Scholar 

  • Riedinger V, Renner M, Rundlöf M, Steffan-Dewenter I, Holzschuh A (2014) Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landsc Ecol 29:425–435

    Article  Google Scholar 

  • Rowe RL, Hanley ME, Goulson D, Clarke DJ, Doncaster CP, Taylor G (2011) Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 35:325–336

    Article  Google Scholar 

  • Sanchez-Bayo F (2014) The trouble with neonicotinoids. Science 346:806–807

    Article  CAS  PubMed  Google Scholar 

  • Sardiñas HS, Kremen C (2015) Pollination services from field-scale agricultural diversification may be context-dependent. Agric Ecosyst Environ 207:17–25

    Article  Google Scholar 

  • Ssegane H, Negri MC (2016) An integrated landscape designed for commodity and bioenergy crops for a tile-drained agricultural watershed. J. Environ, Qual

    Google Scholar 

  • Ssegane H, Negri MC, Quinn J, Urgun-Demirtas M (2015) Multifunctional landscapes: site characterization and field-scale design to incorporate biomass production into an agricultural system. Biomass Bioenerg 80:179–190

    Article  Google Scholar 

  • Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. J Appl Ecol 50:335–344

    Article  Google Scholar 

  • Steffan-Dewenter I, Munzenberg U, Burger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Wolf AT, Ascher JS (2008) Bees of Wisconsin (Hymenoptera: Apoidea: Anthophila). Gt Lakes Entomol 41:129–168

    Google Scholar 

  • Wray JC, Neame LA, Elle E (2014) Floral resources, body size, and surrounding landscape influence bee community assemblages in oak-savannah fragments. Ecol Entomol 39:83–93

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded in part by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. The project was also funded in part by dissertation fellowships granted to JBG by the University of Michigan School of Natural Resources and the University of Michigan Rackham Graduate School. Author contributions: JBG conducted the analysis and wrote the manuscript as part of a doctoral dissertation. JIN supervised the work and contributed to the conceptual design. WSC contributed to the framing and conceptual design of the neutral landscape models, analysis techniques, and research questions. HS contributed to the conceptual design and provided data used in developing future landscape patterns. MCN contributed to the conceptual design. We would like to thank three anonymous reviewers for helpful comments on an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Graham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, J.B., Nassauer, J.I., Currie, W.S. et al. Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area. Landscape Ecol 32, 1023–1037 (2017). https://doi.org/10.1007/s10980-017-0506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-017-0506-y

Keywords

Navigation