Skip to main content

Advertisement

Log in

Urban expansion and local land-cover change both significantly contribute to urban warming, but their relative importance changes over time

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The urban heat island (UHI) affects both biogeochemical cycles and human society. Previous studies of UHI indicate urban expansion and local land-cover change can lead to higher temperatures in cities compared to the adjacent countryside. Few studies have examined the joint effects of city- and local-scale factors on urban warming, and their relative importance.

Objectives

We examined the overall impact of urbanization on urban warming from 1983 to 2011 in Beijing, investigated how city size and the proportion of local developed land jointly influenced the air temperature, and quantified their relative importance over time.

Methods

We compared temperature trends between urban and reference stations and conducted linear regressions to evaluate the city- and local-scale influences, based on meteorological data and remote sensing data.

Results

Urbanization significantly influenced trends of the air temperature, especially in summer. Trends of the mean temperature caused by urbanization was 0.3–0.4 °C decade−1 yearly and 0.4–0.6 °C decade−1 in summer. The increase of city size and the proportion of local developed land both contributed to urban warming, but their relative importance changed over time and varied seasonally. The local-scale factor played a vital role for the air temperature when the city size was relatively small, and were more important in summer when there was more greenspace at the local scale. However, the city-scale factor may cause stronger heat stress in summer, if there was less greenspace locally. When the city size was very large, the city-scale factor became the only significant factor affecting the air temperature.

Conclusions

When a city is relatively small, optimizing the composition or configuration of the local land cover could effectively alleviate UHI effects. However, when the city is already large, a more effective way is to control additional sprawl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker LA, Brazel AJ, Selover N, Martin C, McIntyre N, Steiner FR, Nelson A, Musacchio L (2002) Urbanization and warming of Phoenix (Arizona, USA): impacts, feedbacks and mitigation. Urban Ecosyst 6(3):183–203

    Article  Google Scholar 

  • Basara JB, Basara HG, Illston BG, Crawford KC (2010) The impact of the urban heat island during an intense heat wave in Oklahoma City. Adv Meteorol. doi:10.1155/2010/230365

    Google Scholar 

  • Böhm R (1998) Urban bias in temperature time series—a case study for the city of Vienna, Austria. Clim Chang 38(1):113–128

    Article  Google Scholar 

  • Brazel A, Gober P, Lee S-J, Grossman-Clarke S, Zehnder J, Hedquist B, Comparri E (2007) Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Clim Res 33(2):171–182

    Article  Google Scholar 

  • Brazel A, Selover N, Vose R, Heisler G (2000) The tale of two climates—Baltimore and Phoenix urban LTER sites. Clim Res 15(2):123–135

    Article  Google Scholar 

  • Buyantuyev A, Wu J (2010) Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecol 25(1):17–33

    Article  Google Scholar 

  • Cao A, Zhang H, Zhang Y, Ma W (2008) Decadal changes of air temperature in Shanghai in recent 50 years and it s relation to urbanization. Chin J Geophys 51(6):1663–1669

    Google Scholar 

  • Chen L, Ng E, An X, Ren C, Lee M, Wang U, He Z (2012a) Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: a GIS-based simulation approach. Int J Climatol 32(1):121–136

    Article  CAS  Google Scholar 

  • Chen S, Yoshino H, Li N (2010) Statistical analyses on summer energy consumption characteristics of residential buildings in some cities of China. Energy Build 42(1):136–146

    Article  Google Scholar 

  • Chen X, Su Y, Li D, Huang G, Chen W, Chen S (2012b) Study on the cooling effects of urban parks on surrounding environments using Landsat TM data: a case study in Guangzhou, southern China. Int J Remote Sens 33(18):5889–5914

    Article  Google Scholar 

  • Chen X, Zhao H, Li P, Yin Z (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146

    Article  Google Scholar 

  • Chow WTL, Brennan D, Brazel AJ (2012) Urban heat island research in Phoenix, Arizona: theoretical contributions and policy applications. Bull Am Meteorol Soc 93(4):517–530

    Article  Google Scholar 

  • Connors JP, Galletti CS, Chow WTL (2013) Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecol 28(2):271–283

    Article  Google Scholar 

  • Doick KJ, Peace A, Hutchings TR (2014) The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci Total Environ 493:662–671

    Article  CAS  PubMed  Google Scholar 

  • Doulos L, Santamouris M, Livada I (2004) Passive cooling of outdoor urban spaces. Role Mater Sol Energy 77(2):231–249

    Article  CAS  Google Scholar 

  • Emmanuel R, Krueger E (2012) Urban heat island and its impact on climate change resilience in a shrinking city: the case of Glasgow, UK. Build Environ 53:137–149

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2013) Examining urban heat island relations to land use and air pollution: multiple end member spectral mixture analysis for thermal remote sensing. IEEE J 6(3):1749–1756

    Google Scholar 

  • Forman RT (2014) Urban ecology: science of cities. Cambridge University Press, Cambridge

    Google Scholar 

  • Fujibe F (2009) Detection of urban warming in recent temperature trends in Japan. Int J Climatol 29(12):1811–1822

    Article  Google Scholar 

  • Fujibe F (2011) Urban warming in Japanese cities and its relation to climate change monitoring. Int J Climatol 31(2):162–173

    Article  Google Scholar 

  • Gaffen DJ, Ross RJ (1998) Increased summertime heat stress in the US. Nature 396(6711):529–530

    Article  CAS  Google Scholar 

  • Gaffin S, Rosenzweig C, Khanbilvardi R, Parshall L, Mahani S, Glickman H, Goldberg R, Blake R, Slosberg RB, Hillel D (2008) Variations in New York City’s urban heat island strength over time and space. Theor Appl Climatol 94(1–2):1–11

    Article  Google Scholar 

  • Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2012) Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat Clim Change 3(1):37–41

    Article  Google Scholar 

  • Goggins G, Choi J (2008) Urban heat island phenomenon: relationship between urban size and surface temperature. Geogr J Korea 42(4):543–552

    Google Scholar 

  • Grimmond S (2007) Urbanization and global environmental change: local effects of urban warming. Geogr J 173(1):83–88

    Article  Google Scholar 

  • Hart MA, Sailor DJ (2009) Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor Appl Climatol 95(3–4):397–406

    Article  Google Scholar 

  • Hartz DA, Golden JS, Sister C, Chuang WC, Brazel AJ (2012) Climate and heat-related emergencies in Chicago, Illinois (2003–2006). Int J Biometeorol 56(1):71–83

    Article  PubMed  Google Scholar 

  • Hu S, Tong L, Frazier AE, Liu Y (2015) Urban boundary extraction and sprawl analysis using Landsat images: a case study in Wuhan, China. Habitat Int 47:183–195

    Article  Google Scholar 

  • Huang G, Cadenasso ML (2016) People, landscape, and urban heat island: dynamics among neighborhood social conditions, land cover and surface temperatures. Landscape Ecol 31:2507–2515

    Article  Google Scholar 

  • Huang G, Zhou W, Cadenasso ML (2010) Understanding the relationship between urban land surface temperature, landscape heterogeneity and social structure. In: 2010 IEEE international geoscience and remote sensing symposium, pp 3933–3936

  • Huang G, Zhou W, Cadenasso ML (2011) Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J Environ Manag 92(7):1753–1759

    Article  Google Scholar 

  • Ichinose T, Shimodozono K, Hanaki K (1999) Impact of anthropogenic heat on urban climate in Tokyo. Atmos Environ 33(24):3897–3909

    Article  CAS  Google Scholar 

  • Imhoff ML, Zhang P, Wolfe RE, Bounoua L (2010) Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens Environ 114(3):504–513

    Article  Google Scholar 

  • Jenerette GD, Harlan SL, Buyantuev A, Buyantuev A, Stefanov WL, Declet-Barreto J, Ruddell BL, Myint SW, Kaplan S, Li X (2015) Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ, USA. Landscape Ecol 31(4):745–760

    Article  Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423(6939):525–528

    Article  Google Scholar 

  • Karl TR, Diaz HF, Kukla G (1988) Urbanization: its detection and effect in the United States climate record. J Clim 1(11):1099–1123

    Article  Google Scholar 

  • Kuang W, Liu Y, Dou Y, Chi W, Chen G, Gao C, Yang T, Liu J, Zhang R (2015) What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China. Landscape Ecol 30(2):357–373

    Article  Google Scholar 

  • Lazzarini M, Marpu PR, Ghedira H (2013) Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sens Environ 130:136–152

    Article  Google Scholar 

  • Li Q, Liu X, Zhang H (2004) Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data. Adv Atmos Sci 21(2):260–268

    Article  Google Scholar 

  • Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011) Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens Environ 115(12):3249–3263

    Article  Google Scholar 

  • Li X, Zhou W, Ouyang Z (2013) Relationship between land surface temperature and spatial pattern of greenspace: what are the effects of spatial resolution? Landsc Urban Plan 114:1–8

    Article  Google Scholar 

  • Li X, Zhou W, Ouyang Z, Xu W, Zheng H (2012) Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China. Landscape Ecol 27(6):887–898

    Article  Google Scholar 

  • Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62(318):399–402

    Article  Google Scholar 

  • Liu W, Ji C, Zhong J, Jiang X, Zheng Z (2007) Temporal characteristics of the Beijing urban heat island. Theor Appl Climatol 87(1–4):213–221

    Article  Google Scholar 

  • Ma H, Shao H, Song J (2014) Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs. Meteorol Atmos Phys 123(3–4):105–114

    Article  Google Scholar 

  • Ma Q, Wu J, He C (2016) A hierarchical analysis of the relationship between urban impervious surfaces and land surface temperatures: spatial scale dependence, temporal variations, and bioclimatic modulation. Landscape Ecol 31(5):1139–1153

    Article  Google Scholar 

  • Myint SW, Wentz EA, Brazel AJ, Quattrochi DA (2013) The impact of distinct anthropogenic and vegetation features on urban warming. Landscape Ecol 28(5):959–978

    Article  Google Scholar 

  • Nichol JE, Fung WY, Lam K-s, Wong MS (2009) Urban heat island diagnosis using ASTER satellite images and ‘in situ’ air temperature. Atmos Res 94(2):276–284

    Article  Google Scholar 

  • Ohashi Y, Genchi Y, Kondo H, Kikegawa Y, Yoshikado H, Hirano Y (2007) Influence of air-conditioning waste heat on air temperature in Tokyo during summer: numerical experiments using an urban canopy model coupled with a building energy model. J Appl Meteorol Clim 46(1):66–81

    Article  Google Scholar 

  • Oke TR (1973) City size and urban heat island. Atmos Environ 7(8):769–779

    Article  Google Scholar 

  • Oke TR (1976) The distinction between canopy and boundary-layer urban heat islands. Atmosphere 14(4):268–277

    Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24

    Google Scholar 

  • Oke TR (1995) The heat island of the urban boundary layer: characteristics, causes and effects. In: Cermak JE, Davenport AG, Plate EJ, Viegas DX (eds) Wind climate in cities. Nato Advanced Science Institutes Series, Series E, Applied Sciences, pp 81–107

  • Oke TR (2002) Boundary layer climates. Routledge, London

    Google Scholar 

  • Oke TR (2004) Initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organization, Geneva

    Google Scholar 

  • Oke TR, Spronken-Smith RA, Jáuregui E, Grimmond CS (1999) The energy balance of central Mexico City during the dry season. Atmos Environ 33(24):3919–3930

    Article  CAS  Google Scholar 

  • Owen TW, Carlson TN, Gillies RR (1998) An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int J Remote Sens 19(9):1663–1681

    Article  Google Scholar 

  • Peng J, Xie P, Liu Y, Ma J (2016) Urban thermal environment dynamics and associated landscape pattern factors: a case study in the Beijing metropolitan region. Remote Sens Environ 173:145–155

    Article  Google Scholar 

  • Petralli M, Massetti L, Brandani G, Orlandini S (2014) Urban planning indicators: useful tools to measure the effect of urbanization and vegetation on summer air temperatures. Int J Climatol 34(4):1236–1244

    Article  Google Scholar 

  • Pielke RA, Avissar R (1990) Influence of landscape structure on local and regional climate. Landscape Ecol 4(2–3):133–155

    Article  Google Scholar 

  • Poumadere M, Mays C, Le Mer S, Blong R (2005) The 2003 heat wave in France: dangerous climate change here and now. Risk Anal 25(6):1483–1494

    Article  PubMed  Google Scholar 

  • Qian Y, Zhou W, Yu W, Pickett STA (2015) Quantifying spatiotemporal pattern of urban greenspace: new insights from high resolution data. Landscape Ecol 30(7):1165–1173

    Article  Google Scholar 

  • Radhi H, Fikry F, Sharples S (2013) Impacts of urbanisation on the thermal behaviour of new built up environments: a scoping study of the urban heat island in Bahrain. Landsc Urban Plan 113:47–61

    Article  Google Scholar 

  • Ren G, Chu Z, Chen Z, Ren Y (2007) Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys Res Lett. doi:10.1029/2006GL027927

    Google Scholar 

  • Sailor DJ, Fan HL (2002) Modeling the diurnal variability of effective albedo for cities. Atmos Environ 36(4):713–725

    Article  CAS  Google Scholar 

  • Santamouris M (2013a) Energy and climate in the urban built environment. Routledge, London

    Google Scholar 

  • Santamouris M (2013b) Using cool pavements as a mitigation strategy to fight urban heat island—a review of the actual developments. Renew Sustain Energy Rev 26:224–240

    Article  Google Scholar 

  • Si P, Li Q, Xuan C, Yin H (2009) Contribution of urbanization to change of air temperature in Beijing. Chin J Nat Disaster 4:023

    Google Scholar 

  • Singh O, Arya P, Chaudhary BS (2013) On rising temperature trends at Dehradun in Doon valley of Uttarakhand. India. J Earth Syst Sci 122(3):613–622

    Article  Google Scholar 

  • Steeneveld G, Koopmans S, Heusinkveld B, Van Hove L, Holtslag A (2011) Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J Geophys Res Atmos. doi:10.1029/2011JD015988

    Google Scholar 

  • Stewart ID, Oke TR (2009) Newly developed “thermal climate zones” for defining and measuring urban heat island magnitude in the canopy layer. In: Eighth symposium on urban environment, Phoenix

  • Stewart ID, Oke TR (2012) Local climate zones for urban temperature studies. Bull Am Meteorol Soc 93(12):1879–1900

    Article  Google Scholar 

  • Stone B, Hess JJ, Frumkin H (2010) Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environ Health Perspect 118(10):1425–1428

    Article  PubMed  PubMed Central  Google Scholar 

  • Su W, Zhang Y, Yang Y, Ye G (2014) Examining the impact of greenspace patterns on land surface temperature by coupling LiDAR data with a CFD model. Sustainability 6(10):6799–6814

    Article  Google Scholar 

  • Taha H (1997) Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy Build 25(2):99–103

    Article  Google Scholar 

  • Tan J, Zheng Y, Tang X, Guo C, Li L, Song G, Zhen X, Yuan D, Kalkstein AJ, Li F, Chen H (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54(1):75–84

    Article  PubMed  Google Scholar 

  • Trusilova K, Jung M, Churkina G, Karstens U, Heimann M, Claussen M (2008) Urbanization impacts on the climate in Europe: numerical experiments by the PSU-NCAR Mesoscale Model (MM5). J Appl Meteorol Clim 47(5):1442–1455

    Article  Google Scholar 

  • Unger J (2004) Intra-urban relationship between surface geometry and urban heat island: review and new approach. Clim Res 27(3):253–264

    Article  Google Scholar 

  • Unger J, Bottyán Z, Sümeghy Z, Gulyás Á (2004) Connection between urban heat island and surface parameters: measurements and modeling. IDŐJÁRÁS 108:173–194

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384

    Article  Google Scholar 

  • Wang M, Yan X, Liu J, Zhang X (2013) The contribution of urbanization to recent extreme heat events and a potential mitigation strategy in the Beijing–Tianjin–Hebei metropolitan area. Theor Appl Climatol 114(3–4):407–416

    Article  Google Scholar 

  • Weng QH, Lu DS, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483

    Article  Google Scholar 

  • Weng QH, Yang SH (2004) Managing the adverse thermal effects of urban development in a densely populated Chinese city. J Environ Manage 70(2):145–156

    Article  PubMed  Google Scholar 

  • Whitman S, Good G, Donoghue ER, Benbow N, Shou W, Mou S (1997) Mortality in Chicago attributed to the July 1995 heat wave. Am J Public Health 87(9):1515–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong KV, Paddon A, Jimenez A (2013) Review of world urban heat islands: many linked to increased mortality. J Energy Resour 135(2):022101

    Article  Google Scholar 

  • Wu J, Xiang W-N, Zhao J (2014) Urban ecology in China: historical developments and future directions. Landsc Urban Plan 125:222–233

    Article  Google Scholar 

  • Yan Z, Li Z, Jones P (2010) Effects of site change and urbanisation in the Beijing temperature series 1977–2006. Int J Climatol 30(8):1226–1234

    Article  Google Scholar 

  • Yang X, Hou Y, Chen B (2011) Observed surface warming induced by urbanization in east China. J Geophys Res. doi:10.1029/2010JD015452

    Google Scholar 

  • Yang P, Ren G, Liu W (2013) Spatial and temporal characteristics of Beijing urban heat island intensity. J Appl Meteorol Clim 52(8):1803–1816

    Article  Google Scholar 

  • Yu W, Zhou W, Qian Y, Yan J (2016) A new approach for land cover classification and change analysis: integrating backdating and an object-based method. Remote Sens Environ 177:37–47

    Article  Google Scholar 

  • Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106(3):375–386

    Article  Google Scholar 

  • Yue W, Xu J, Tan W, Xu L (2007) The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. Int J Remote Sens 28(15):3205–3226

    Article  Google Scholar 

  • Zhang JY, Dong WJ, Wu LY, Wei JF, Chen PY, Lee DK (2005) Impact of land use changes on surface warming in China. Adv Atmos Sci 22(3):343–348

    Article  Google Scholar 

  • Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK, Tucker CJ, Myneni RB (2004) Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci USA 101(26):9540–9544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Huang G, Cadenasso ML (2011) Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc Urban Plan 102(1):54–63

    Article  Google Scholar 

  • Zhou W, Qian Y, Li X, Li W, Han L (2014) Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape Ecol 29(1):153–167

    Article  Google Scholar 

  • Zhou, Y, Ren G (2009) The effect of urbanization on maximum, minimum temperatures and daily temperature range in North China. Chin J Plateau Meteorol 28(5):1158–1166

    Google Scholar 

  • Zhou W, Pickett STA, Cadenasso ML (2016) Shifting concepts of urban spatial heterogeneity and their implications for sustainability. Landscape Ecol. doi:10.1007/s10980-016-0432-4

    Google Scholar 

  • Zinzi M, Agnoli S (2012) Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build 55:66–76

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 41371197, 41422104 and 41590841) and the One Hundred Talents Program of the Chinese Academy of Sciences. Thank Dr. Steward T. A. Pickett from the Cary Institute of Ecosystem Studies and Dexter Locke at Clark University for their helpful comments on the manuscript. We thank the editor and two reviewers, whose comments greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhou, W., Qian, Y. et al. Urban expansion and local land-cover change both significantly contribute to urban warming, but their relative importance changes over time. Landscape Ecol 32, 763–780 (2017). https://doi.org/10.1007/s10980-016-0484-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0484-5

Keywords

Navigation