Landscape Ecology

, Volume 31, Issue 10, pp 2459–2469

Modeling local spatial patterns of wild bee diversity in Pennsylvania apple orchards

  • Melanie A. Kammerer
  • David J. Biddinger
  • Neelendra K. Joshi
  • Edwin G. Rajotte
  • David A. Mortensen
Research Article

DOI: 10.1007/s10980-016-0416-4

Cite this article as:
Kammerer, M.A., Biddinger, D.J., Joshi, N.K. et al. Landscape Ecol (2016) 31: 2459. doi:10.1007/s10980-016-0416-4

Abstract

Context

The positive correlation between landscape area of semi-natural habitat and wild pollinator richness and abundance in agroecosystems has been well studied. However, we lack a deep understanding of local scale floral resource and nest provisioning for wild bees necessary to optimize implementation of pollinator conservation practices.

Objectives

The primary objective of this study was to use a spatially interactive landscape pollination model (hereafter, the Lonsdorf model) to represent field scale spatial patterns of wild bee abundance and richness within a heterogeneous landscape in the mid-Atlantic USA.

Methods

We parameterized the Lonsdorf model with high resolution aerial imagery and insight from a previously published floristic study. To test the Lonsdorf model predictions, field studies were conducted to measure wild bee abundance and species richness in apple orchards as a function of distance from a forest edge.

Results

Field measurements indicated apple pollinator abundance and species richness significantly decreased with increasing distance from the forest edge. The Lonsdorf model pollination service score was highly sensitive to changes in resource provisioning in orchard and non-crop areas, and including resource rich forest and forest edge habitats in the model significantly improved pollination service estimates.

Conclusions

We demonstrated a novel application of the Lonsdorf model at a field scale to predict trends in pollination service provisioning as a factor of local habitat features. With sufficiently detailed inputs, the Lonsdorf model is a promising tool to quantify field scale pollination service deficits, guiding more cost effective habitat supplementation and other conservation efforts.

Keywords

Forest edge Lonsdorf model Malus domestica Pollination Spatial modeling Wild bees 

Supplementary material

10980_2016_416_MOESM1_ESM.docx (23.1 mb)
Supplementary material 1 (DOCX 23676 kb)

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Melanie A. Kammerer
    • 1
    • 2
  • David J. Biddinger
    • 3
    • 4
  • Neelendra K. Joshi
    • 5
  • Edwin G. Rajotte
    • 4
  • David A. Mortensen
    • 1
    • 2
  1. 1.Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Fruit Research and Extension CenterThe Pennsylvania State UniversityBiglervilleUSA
  4. 4.Department of EntomologyThe Pennsylvania State UniversityUniversity ParkUSA
  5. 5.Department of EntomologyUniversity of ArkansasFayettevilleUSA