Skip to main content

Advertisement

Log in

A modeling approach for identifying recolonisation source sites in river restoration planning

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The colonization of restored river reaches by benthic macroinvertebrates and fish depends strongly on the proximity of source sites. Central European river networks have been fragmented over decades and populations of sensitive species have been eradicated from large parts of the catchments.

Objectives

Identification of remaining source sites (i.e., near-natural river stretches with populations of sensitive organisms) allows to protect them and reconnect them to degraded or restored stretches. We developed an approach to identify source sites of fish and benthic invertebrates and applied it to large parts of Germany.

Methods

The approach is based on identifying source sites from sampling data (5919 benthic invertebrate and 2584 fish monitoring sites) depending on the occurring number of sensitive species. For river stretches that have not been sampled we conducted statistical modeling with environmental data (e.g. land use, river habitat data) using boosted regression trees to identify source sites characterized by similar environmental conditions.

Results

The results are presented as maps on the level of the federal states. Statistical modeling allowed identification of stream type-specific environmental parameters and their thresholds. The maps allow a visual estimation of the recolonisation potential for river sections considered for restoration.

Conclusions

The results provide valuable insight into the perspective of restoration in different regions. For restoration planning we suggest application on a catchment level using environmental data with higher resolution and consideration of additional parameters (e.g. fine sediment input) in lowland regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arle J, Wagner F (2011) Die Bedeutung der Gewässerstruktur für das Erreichen des guten ökologischen Zustands in den Fließgewässern des Freistaates Thüringen. Fliessgewässerrenaturierung heute und morgen–Wasserrahmenrichtlinie Massnahmen und Effizienzkontrolle 13:207–233

    Google Scholar 

  • Beechie TJ, Sear DA, Olden JD, Pess GR, Buffington JM, Moir H, Roni P, Pollock MM (2010) Process-based principles for restoring river ecosystems. Bioscience 60(3):209–222

    Article  Google Scholar 

  • Bunce RGH, Bogers MMB, Evans D, Halada L, Jongman RHG, Mucher CA, Bauch B, de Blust G, Parr TW, Olsvig-Whittaker L (2013) The significance of habitats as indicators of biodiversity and their links to species. Ecol Indic 33:19–25

    Article  Google Scholar 

  • Bund/Länder-Arbeitsgemeinschaft Wasser (LAWA) (2000) Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland—Verfahren für kleine und mittelgroße Fließgewässer. Schwerin

  • Bund/Länder-Arbeitsgemeinschaft Wasser (LAWA) (2003) Karte der biozönotisch bedeutsamen Fließgewässertypen Deutschlands. http://www.fliessgewaesserbewertung.de. Accessed Feb 2015

  • Bundesamt für Kartographie und Geodäsie (BKG) (2015) Digitales Landschaftsmodell 1:1 000 000 (DLM1000). https://www.bkg.bund.de/DE/Produkte-und-Services/Shop-und-Downloads/Digitale-Geodaten/Landschaftsmodelle/Deutschland/deutschland.html. Accessed June 2016

  • CEN (2003) Water quality—sampling of fish with electricity. European standard—EN 14011:2003. European Committee for Standardization, Brussels

  • Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random forests for classification in ecology. Ecology 88(11):2783–2792

    Article  PubMed  Google Scholar 

  • Dahm V, Hering D, Nemitz D, Graf W, Schmidt-Kloiber A, Leitner P, Melcher A, Feld CK (2013) Effects of physico-chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria. Hydrobiologia 704(1):389–415

    Article  CAS  Google Scholar 

  • Dußling U, Berg R, Klinger H, Wolter C (2014) Assessing the ecological status of river sytems using fish assemblages. Handbuch Angewandte Limnologie: Grundlagen—Gewässerbelastung—Restaurierung—Aquatische Ökotoxikologie—Bewertung—Gewässerschutz. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Elith J, Leathwick JR (2014) Boosted regression trees for ecological modeling. http://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf. Accessed Feb 2015

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813

    Article  CAS  PubMed  Google Scholar 

  • European Environment Agency (EEA) (2000) CORINE land cover technical guide—Addendum 2000. http://www.eea.europa.eu/publications/tech40add. Accessed Feb 2015

  • European Environment Agency (EEA) (2011a) Analysing and managing urban growth. http://www.eea.europa.eu/articles/analysing-and-managing-urban-growth. Accessed Feb 2015

  • European Environment Agency (EEA) (2011b) Hazardous substances in Europes fresh and marine waters—an overview. Technical report no 8/2011. http://www.eea.europa.eu/publications/hazardous-substances-in-europes-fresh. Accessed Feb 2015

  • European Environment Agency (EEA) (2012) Nutrients in freshwater (CSI 020)—assessment published Oct 2012. http://www.eea.europa.eu/data-and-maps/indicators/nutrients-in-freshwater/nutrients-in-freshwater-assessment-published-3. Accessed Feb 2015

  • Federal Agency for Cartography and Geodesy (BKG) (2009) Digital terrain models for Germany. http://www.bkg.bund.de/nn_149572/EN/FederalOffice/Products/Geo-Data/Digital-Terrain-Models/DGM-Germany/DGMGermany__node.html__nnn=true. Accessed Feb 2015

  • Federal Agency for Cartography and Geodesy (BKG) (2014) Digital landscape model. http://www.bkg.bund.de/nn_170876/EN/Home/homepage__node.html__nnn=true. Accessed Feb 2015

  • Feld CK (2013) Response of three lotic assemblages to riparian and catchment-scale land use: implications for designing catchment monitoring programmes. Freshw Biol 58(4):715–729

    Article  Google Scholar 

  • Gellert G, Behrens S, Raschke M (2012) The return of degraded stream ecosystems by using positive impacts from near-natural sections: a new practical guide for restorations. Water Environ J 26(3):415–421

    Article  Google Scholar 

  • Gellert G, Pottgiesser T, Euler T (2014) Assessment of the structural quality of streams in Germany—basic description and current status. Environ Monit Assess 186(6):3365–3378

    Article  PubMed  Google Scholar 

  • German Federal Environmental Agency (UBA) (2009) Ökologischer Zustand der Fließgewässer. http://www.umweltbundesamt.de/daten/gewaesserbelastung/fliessgewaesser/oekologischer-zustand-der-fliessgewaesser. Accessed Feb 2015

  • Goddard MA, Post CJ, English WR, Pike JW (2008) Examining the impacts of changing land use on biological integrity in streams using geographical information systems and statistical modeling. Aquat Ecosyst Health Manag 11(2):230–242

    Article  Google Scholar 

  • Haase P, Hering D, Jähnig SC, Lorenz AW, Sundermann A (2013) The impact of hydromorphological restoration on river ecological status: a comparison of fish, benthic invertebrates, and macrophytes. Hydrobiologia 704:475–488

    Article  Google Scholar 

  • Haase P, Lohse S, Pauls S, Schindehütte K, Sundermann A, Rolauffs P, Hering D (2004) Assessing streams in Germany with benthic invertebrates: development of a practical standardised protocol for macroinvertebrate sampling and sorting. Limnol Ecol Manag Inland Waters 34(4):349–365

    Article  Google Scholar 

  • Harding JS, Benfield EF, Bolstad PV, Helfman GS, Jones EBD (1998) Stream biodiversity: the ghost of land use past. Proc Natl Acad Sci 95(25):14843–14847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hering D, Aroviita J, Baattrup-Pedersen A, Brabec K, Buijse T, Ecke F, Friberg N, Gielczewski M, Januschke K, Köhler J, Kupilas B, Lorenz AW, Muhar S, Paillex A, Poppe M, Schmidt T, Schmutz S, Vermaat J, Verdonschot PFM, Verdonschot RCM, Wolter C, Kail J (2015) Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study of 20 European restoration projects. J Appl Ecol 52:1518–1527

    Article  Google Scholar 

  • Hering D, Moog O, Sandin L, Verdonschot PFM (2004) Overview and application of the AQEM assessment system. Hydrobiologia 516(1–3):1–20

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2012) dismo: Species distribution modeling. R package version 0.7-15. http://cran.r-project.org/web/packages/dismo/. Accessed Feb 2015

  • Hopkins RL II (2009) Use of landscape pattern metrics and multiscale data in aquatic species distribution models: a case study of a freshwater mussel. Landscape Ecol 24(7):943–955

    Article  Google Scholar 

  • Hopkins RL II, Burr BM (2009) Modeling freshwater fish distributions using multiscale landscape data: a case study of six narrow range endemics. Ecol Model 220(17):2024–2034

    Article  Google Scholar 

  • Hughes CL, Dytham C, Hill JK (2007) Modelling and analysing evolution of dispersal in populations at expanding range boundaries. Ecol Entomol 32(5):437–445

    Article  Google Scholar 

  • Illies J (1978) Limnofauna Europaea. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Januschke K, Sundermann A, Antons C, Haase P, Lorenz AW, Hering D (2009) Untersuchung und Auswertung von ausgewählten Renaturierungsbeispielen repräsentativer Fließgewässertypen der Flusseinzugsgebiete Deutschlands. Schriftenreihe des Deutschen Rats für Landespflege 82:23–39

    Google Scholar 

  • Kail J, Arle J, Jähnig SC (2012) Limiting factors and thresholds for macroinvertebrate assemblages in European rivers: empirical evidence from three datasets on water quality, catchment urbanization, and river restoration. Ecol Indic 18:63–72

    Article  CAS  Google Scholar 

  • Kail J, Brabec K, Januschke K, Poppe M (2015) The effect of river restoration on fish, macroinvertebrates and macrophytes: a meta-analysis. Ecol Indic 58:311–321

    Article  Google Scholar 

  • Kail J, Hering D (2009) The influence of adjacent stream reaches on the local ecological status of Central European mountain streams. River Res Appl 25(5):537–550

    Article  Google Scholar 

  • Kail J, Wolter C (2011) Analysis and evaluation of large scale river restoration planning in Germany to better link river research and management. River Res Appl 27:985–999

    Article  Google Scholar 

  • Landesamt für Natur, Umwelt und Verbraucherschutz des Landes Nordrhein-Westfalen (LANUV) (2011) Strahlwirkungs- und Trittsteinkonzept in der Planungspraxis. LANUV-Arbeitsblatt 16. http://www.lanuv.nrw.de/veroeffentlichungen/arbeitsblatt/arbla16/arbla16start.htm. Accessed Feb 2015

  • Lane JQ, Raimondi PT, Kudela RM (2009) Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. Mar Ecol Prog Ser 383:37–51

    Article  CAS  Google Scholar 

  • Leclere J, Oberdorff T, Belliard J, Leprieur F (2011) A comparison of modeling techniques to predict juvenile 0+ fish species occurrences in a large river system. Ecol Inform 6(5):276–285

    Article  Google Scholar 

  • Lorenz AW, Feld CK (2013) Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia 704(1):489–501

    Article  Google Scholar 

  • Lorenz AW, Hering D, Feld CK, Rolauffs P (2004) A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia 516(1–3):107–127

    Article  Google Scholar 

  • Meier C, Böhmer J, Biss R, Feld C, Haase P, Lorenz A, Rawer-Jost C, Rolauffs P, Schindehütte K, Schöll F, Sundermann A (2006) Weiterentwicklung und Anpassung des nationalen Bewertungssystems für Makrozoobenthos an neue internationale Vorgaben. Abschlussbericht im Auftrag des Umweltbundesamtes. http://www.fliessgewaesserbewertung.de. Accessed Feb 2015

  • Meyer JL, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE (2007) The contribution of headwater streams to biodiversity in river networks. JAWRA J Am Water Resour Assoc 43(1):86–103

    Article  Google Scholar 

  • Nilsson C, Polvi LE, Gardeström J, Hasselquist EM, Lind L, Sarneel JM (2015) Riparian and in-stream restoration of boreal streams and rivers: success or failure? Ecohydrology 8:753–764. doi:10.1002/eco.1480

    Article  Google Scholar 

  • Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol 55:205–222

    Article  Google Scholar 

  • Panoutsou C, Elbersen B, Böttcher H (2011) Energy crops in the European context. Biomass futures. Intelligent energy Europe. http://www.biomassfutures.eu/public_docs/final_deliverables/WP8/D8.4%20Energy%20crops%20in%20the%20European%20context%20%28contribution%20to%20FNR%20workshop%29.pdf. Accessed Feb 2015

  • Parkyn SM, Smith BJ (2011) Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration. Environ Manag 48(3):602–614

    Article  Google Scholar 

  • Pottgiesser T, Sommerhäuser M (2008) Beschreibung und Bewertung der deutschen Fliessgewässertypen. Steckbriefe und Anhang. http://www.wasserblick.net/servlet/is/24739/. Accessed Feb 2015

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. http://www.r-project.org/

  • Ridgeway G (2012) gbm: generalized boosted regression models. R package version 2.0-5. http://cran.r-project.org/web/packages/gbm/index.html. Accessed Feb 2012

  • Roni P, Hanson K, Beechie T (2008) Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. North Am J Fish Manag 28:856–890

    Article  Google Scholar 

  • Stoll S, Sundermann A, Lorenz AW, Kail J, Haase P (2013) Small and impoverished regional species pools constrain colonisation of restored river reaches by fishes. Freshw Biol 58(4):664–674

    Article  Google Scholar 

  • Sundermann A, Stoll S, Haase P (2011) River restoration success depends on the species pool of the immediate surroundings. Ecol Appl 21(6):1962–1971

    Article  PubMed  Google Scholar 

  • Swets J (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Thomas G (2014) Improving restoration practice by deriving appropriate techniques from analysing the spatial organization of river networks. Limnol Ecol Manag Inland Waters 45:50–60

    Article  CAS  Google Scholar 

  • Tockner K, Pusch M, Borchardt D, Lorang MS (2010) Multiple stressors in coupled river-floodplain ecosystems. Freshw Biol 55:135–151

    Article  Google Scholar 

  • Tong STY, Chen W (2002) Modeling the relationship between land use and surface water quality. J Environ Manag 66(4):377–393

    Article  Google Scholar 

  • Van Teeffelen AJA, Vos CC, Opdam P (2012) Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol Conserv 153:239–253

    Article  Google Scholar 

  • Verdonschot PFM, Spears BM, Feld CK, Brucet S, Keizer-Vlek H, Borja A, Elliott M, Kernan M, Johnson RK (2013) A comparative review of recovery processes in rivers, lakes, estuarine and coastal waters. Hydrobiologia 704(1):453–474

    Article  Google Scholar 

  • Villard M-A, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51(2):309–318

    Article  Google Scholar 

  • Völker J, Borchardt D (2007) Hydromorphologische Bedingungen und deren Wechselwirkung mit der Makrozoobenthosbesiedlung. Ergebnisse und Schlussfolgerungen für die Umsetzung der WRRL in Bezug auf die Monitoringplanung und im Hinblick auf lokale regionale und überregionale Umweltziele. Abschlussbericht. Im Auftrag des Hessischen Landesamtes für Umwelt und Geologie (HLUG). Center for Environmental Systems Research (CESR), University of Kassel

  • Von Bertrab MG, Krein A, Stendera S, Thielen F, Hering D (2013) Is fine sediment deposition a main driver for the composition of benthic macroinvertebrate assemblages? Ecol Indic 24:589–598

    Article  Google Scholar 

  • Waite IR, Kennen JG, May JT, Brown LR, Cuffney TF, Jones KA, Orlando JL (2012) Comparison of stream invertebrate response models for bioassessment metrics1. JAWRA J Am Water Resour Assoc 48(3):570–583

    Article  Google Scholar 

  • Water Framework Directive (WFD) (2000) Directive 2000/60/EC. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060. Accessed Feb 2015

  • Winking C, Lorenz AW, Sures B, Hering D (2014) Recolonisation patterns of benthic invertebrates: a field investigation of restored former sewage channels. Freshw Biol 59(9):1932–1944

    Article  Google Scholar 

  • Wood PJ, Armitage PD (1997) Biological effects of fine sediment in the lotic environment. Environ Manag 21(2):203–217

    Article  Google Scholar 

Download references

Acknowledgments

This study was carried out in frame of the project “Strategies for optimizing river restoration measures and the evaluation of restoration success” funded by the German Federal Environmental Agency (UBA). We greatly acknowledge the provision of biotic and environmental data by the water authorities of the federal states.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Dahm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahm, V., Hering, D. A modeling approach for identifying recolonisation source sites in river restoration planning. Landscape Ecol 31, 2323–2342 (2016). https://doi.org/10.1007/s10980-016-0402-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0402-x

Keywords

Navigation