Skip to main content

Advertisement

Log in

Climate drying amplifies the effects of land-use change and interspecific interactions on birds

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Climate change may amplify the effects of land-use change, including induced changes in interspecific interactions.

Objectives

To investigate whether an avifauna changed over a period of severe drought, and if changes in avifaunas were related to changes in vegetation characteristics and the irruption of a despotic native species, the noisy miner Manorina melanocephala.

Methods

In the box–ironbark forests of south-eastern Australia, we resurveyed the avifaunas and remeasured vegetation characteristics in 120 forest transects in 2010–2011 that had previously been measured in 1995–1997.

Results

The avifauna changed markedly over the prolonged drought, and changes were more marked in smaller fragments of remnant vegetation in which more pronounced vegetation change had occurred. The noisy miner increased differentially in smaller remnants adding to the declines, especially for small-bodied birds.

Conclusions

Long droughts interspersed with short wet periods are projected for the region, so the imposition of climate effects on an already much-modified region has profound implications for the avifauna. The noisy miner has (and continues) to benefit from both land-use and climate change, so future sequences of drought interspersed with short wet periods are likely to lead to further changes in the avifauna as the miner extends its occupancy. Differential reductions in small nectarivores and insectivores will affect ecosystem processes, including the control of defoliating insects, seed dispersal and pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16(6):743–753

    Article  Google Scholar 

  • Banks-Leite C, Pardini R, Boscolo D, Cassano CR, Püttker T, Barros CS, Barlow J (2014) Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. J Appl Ecol 51(4):849–859

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell HL (1985) Seasonal variation and the effects of drought on the abundance of arthropods in savanna woodland on the Northern Tablelands of New South Wales. Aust J Ecol 10(3):207–221

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Article  PubMed Central  PubMed  Google Scholar 

  • Bennett PM, Owens IP (1997) Variation in extinction risk among birds: chance or evolutionary predisposition? Proc R Soc Lond B 264(1380):401–408

    Article  Google Scholar 

  • Bennett JM, Cunningham SC, Connelly CA, Clarke RH, Thomson JR, Mac Nally R (2013) The interaction between a drying climate and land use affects forest structure and above-ground carbon storage. Glob Ecol Biogeogr 22:1239–1247

    Article  Google Scholar 

  • Bennett JM, Clarke RH, Thomson JR, Mac Nally R (2014a) Variation in abundance of nectarivorous birds: does a competitive despot interfere with flower-tracking? J Anim Ecol 83(6):1531–1541

    Article  PubMed  Google Scholar 

  • Bennett JM, Nimmo DG, Clarke RH, Thomson JR, Cheers G, Horrocks GF, Hall M, Radford JQ, Bennett AR, Mac Nally R (2014b) Resistance and resilience: can the abrupt end of extreme drought reverse avifaunal collapse? Divers Distrib 20(11):1321–1332

    Article  Google Scholar 

  • Bennett JM, Clarke RH, Thomson JR, Mac Nally R (2015) Fragmentation, vegetation change and irruptive competitors affect recruitment of woodland birds. Ecography 38(2):163–171

    Article  Google Scholar 

  • Blakers M, Davies SJJF, Reilly PN (1984) Atlas of Australian birds. Melbourne University Press, Melbourne

    Google Scholar 

  • BoM (2013) Australian climate variability and change Bureau of Meterology, Melbourne. http://www.bom.gov.au/cgi-bin/climate/change/timeseries.cgi

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):326–349

    Article  Google Scholar 

  • Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23(8):453–460

    Article  PubMed  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7(4):434–455

    Google Scholar 

  • Butt N, Seabrook L, Maron M, Law BS, Dawson TP, Syktus J, McAlpine CA (2015) Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob Change Biol. doi:10.1111/gcb.12869

    Google Scholar 

  • Capon SJ, Chambers LE, Mac Nally R, Naiman RJ, Davies P, Marshall N, Pittock J, Reid M, Capon T, Douglas M, Catford J, Baldwin D, Stewardson M, Roberts J, Parsons M, Williams SE (2013) Riparian ecosystems in the 21st Century: hotspots for climate change adaptation? Ecosystems 16(3):359–381

    Article  Google Scholar 

  • Carey MP, Sanderson BL, Barnas KA, Olden JD (2012) Native invaders—challenges for science, management, policy, and society. Front Ecol Environ 10(7):373–381

    Article  Google Scholar 

  • de Leeuw J, Mair P (2009) Multidimensional scaling using majorization: SMACOF in R. J Stat Softw 31(3):1–30

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22(9):489–496

    Article  PubMed  Google Scholar 

  • ECC (2001) Box–ironbark forests and woodlands investigation. Environment Conservation Council, Melbourne

    Google Scholar 

  • Eyre TJ, Maron M, Mathieson MT, Haseler M (2009) Impacts of grazing, selective logging and hyper-aggressors on diurnal bird fauna in intact forest landscapes of the Brigalow Belt, Queensland. Austral Ecol 34(6):705–716

    Article  Google Scholar 

  • Ford HA, Walters JR, Cooper CB, Debus SJS, Doerr VAJ (2009) Extinction debt or habitat change?—ongoing losses of woodland birds in north-eastern New South Wales, Australia. Biol Conserv 142(12):3182–3190

    Article  Google Scholar 

  • Gelman A, Meng X-L, Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6:733–787

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 996

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. In: Field C, Barros V, Dokken D et al (eds) Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1132

  • Jentsch A, Beierkuhnlein C (2008) Research frontiers in climate change: effects of extreme meteorological events on ecosystems. C R Geosci 340(9–10):621–628

    Article  Google Scholar 

  • Johnson DH (2008) In defense of indices: the case of bird surveys. J Wildl Manag 72(4):857–868

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  • Leblanc M, Tweed S, Van Dijk A, Timbal B (2012) A review of historic and future hydrological changes in the Murray-Darling Basin. Glob Planet Change 80:226–246

    Article  Google Scholar 

  • Lundberg P (1988) The evolution of partial migration in birds. Trends Ecol Evol 3(7):172–175

    Article  CAS  PubMed  Google Scholar 

  • Lunn DJ, Best N, Whittaker JC (2009) Generic reversible jump MCMC using graphical models. Stat Comput 19(4):395–408

    Article  Google Scholar 

  • Mac Nally R, Timewell CAR (2005) Resource availability controls bird-assemblage composition through interspecific aggression. Auk 122:1097–1111

    Article  Google Scholar 

  • Mac Nally R, Bennett AF, Horrocks G (2000) Forecasting the impacts of habitat fragmentation. Evaluation of species-specific predictions of the impact of habitat fragmentation on birds in the box-ironbark forests of central Victoria, Australia. Biol Conserv 95(1):7–29

    Article  Google Scholar 

  • Mac Nally R, Bennett AF, Thomson JR, Radford JQ, Unmack G, Horrocks G, Vesk PA (2009) Collapse of an avifauna: climate change appears to exacerbate habitat loss and degradation. Divers Distrib 15(4):720–730

    Article  Google Scholar 

  • Mac Nally R, Bowen M, Howes A, McAlpine CA, Maron M (2012) Despotic, high-impact species and the subcontinental scale control of avian assemblage structure. Ecology 93(3):668–678

    Article  Google Scholar 

  • Mac Nally R, Lada H, Cunningham SC, Thomson JR, Fleishman E (2014) Climate-change-driven deterioration of the condition of floodplain forest and the future for the avifauna. Glob Ecol Biogeogr 23(2):191–202

    Article  Google Scholar 

  • Mantyka-Pringle CS, Martin TG, Rhodes JR (2012) Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob Change Biol 18(4):1239–1252

    Article  Google Scholar 

  • Maron M, Grey M, Catterall C, Clarke M, Davidson I, Ingwersen D, Kirkpatrick J, Lindenmayer D, Loyn R, Mac Nally R, Richard M, Oliver D, Robinson D, Thomson J, Tzaros C (2012) Beating the bullies: managing aggressive Manorinas to restore bird assemblages. In: The 2nd report on Avifaunal disarray from a single despotic Species. The Australian Centre for Ecological Analysis and Synthesis (ACEAS). Retrieved from http://www.aceas.org.au/index.php?option=com_content&view=article&id=84&Itemid=86#WS2

  • Maron M, Grey M, Catterall C, Major RE, Oliver DL, Clarke MF, Loyn RH, Mac Nally R, Davidson L, Thomson JR (2013) Avifaunal disarray due to a single despotic species. Divers Distrib 19(12):1468–1479

    Article  Google Scholar 

  • McAlpine CA, Syktus J, Ryan JG, Deo RC, McKeon GM (2009) A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia’s climate. Glob Change Biol 15(9):2206–2223

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Book  Google Scholar 

  • Milazzo M, Mirto S, Domenici P, Gristina M (2013) Climate change exacerbates interspecific interactions in sympatric coastal fishes. J Anim Ecol 82(2):468–477

    Article  PubMed  Google Scholar 

  • Oksanen JF, Blanchet G, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) vegan: Community Ecology Package. 07/07/13, 2.0–3 edn. The Comprehensive R Archive Network

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Radford JQ, Bennett AF (2005) Terrestrial avifauna of the Gippsland Plain and Strzelecki Ranges, Victoria, Australia: insights from Atlas data. Wildl Res 32(6):531–555

    Article  Google Scholar 

  • Robertson OJ, McAlpine C, House A, Maron M (2013) Influence of interspecific competition and landscape structure on spatial homogenization of avian assemblages. PloS One 8(5):e65299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson S, Thompson F, Donovan T, Whitehead D, Faaborg J (1995) Regional forest fragmentation and the nesting success of migratory birds. Science 267(31):1987–1990

    Article  CAS  PubMed  Google Scholar 

  • Sekercioglu CH (2006) Increasing awareness of avian ecological function. Trends Ecol Evol 21(8):464–471

    Article  PubMed  Google Scholar 

  • Selwood K, McGeoch M, Mac Nally R (2014) The effects of climate change and land-use change on demographic rates and population viability. Biol Rev

  • Skagen SK, Adams AAY (2012) Weather effects on avian breeding performance and implications of climate change. Ecol Appl 22(4):1131–1145

    Article  PubMed  Google Scholar 

  • Spiegelhalter D, Thomas A, Best N (2003) WinBUGS version 1.4. Bayesian inference using Gibbs sampling. MRC Biostatistics Unit, Institute for Public Health, Cambridge, UK

  • Taylor SG (2008) Leaf litter invertebrate assemblages in box-ironbark forest: composition, size and seasonal variation in biomass. Vic Nat 125:19–27

    Google Scholar 

  • Thompson RM, Beardall J, Beringer J, Grace M, Sardina P (2013) Means and extremes: building variability into community-level climate change experiments. Ecol Lett 16(6):799–806

    Article  PubMed  Google Scholar 

  • Thomson JR, Kimmerer WJ, Brown LR, Newman KB, Nally RM, Bennett WA, Feyrer F, Fleishman E (2010) Bayesian change point analysis of abundance trends for pelagic fishes in the upper San Francisco Estuary. Ecol Appl 20(5):1431–1448

    Article  PubMed  Google Scholar 

  • Thomson JR, Maron M, Grey MJ, Catterall CP, Major RE, Oliver DL, Clarke MF, Loyn RH, Davidson I, Ingwersen D, Robinson D, Kutt A, MacDonald MA, Mac Nally R (2015) Avifaunal disarray: quantifying models of the occurrence and ecological effects of a despotic bird species. Divers Distrib 21(4):451–464

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11(12):1351–1363

    Article  PubMed  Google Scholar 

  • Yom-Tov Y, McCleery R, Purchase D (1992) The survival rate of Australian passerines. Ibis 134(4):374–379

    Article  Google Scholar 

Download references

Acknowledgments

The project was partially supported by an Australian Research Council Linkage Grant (LP120200217) and grants from the Bill Holsworth Trust and the Australian Bird Environment Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne M. Bennett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, J.M., Clarke, R.H., Horrocks, G.F.B. et al. Climate drying amplifies the effects of land-use change and interspecific interactions on birds. Landscape Ecol 30, 2031–2043 (2015). https://doi.org/10.1007/s10980-015-0229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-015-0229-x

Keywords

Navigation