Skip to main content

Advertisement

Log in

Modeling direct and indirect climate change impacts on ecological networks: a case study on breeding habitat of Dutch meadow birds

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Climate change can directly affect habitats within ecological networks, but may also have indirect effects on network quality by inducing land use change. The relative impact of indirect effects of climate change on the quality of ecological networks currently remains largely unknown.

Objectives

The objective of this study was to determine the relative impact of direct and indirect effects of climate change on a network of breeding habitat of four meadow bird species (Black-tailed godwit, Common redshank, Eurasian oystercatcher and Northern lapwing) in the Netherlands.

Methods

Habitat models were developed that link meadow bird breeding densities to three habitat characteristics that are sensitive to environmental change (landscape openness, land use and groundwater level). These models were used to assess the impact of scenarios of landscape change with and without climate change on meadow bird breeding habitat quality for a case study area in the peat meadow district of the Netherlands.

Results

All scenarios led to significantly reduced habitat quality for all species, mainly as a result of conversion of grassland to bioenergy crops, which reduces landscape openness. Direct effects of climate change on habitat quality were largely absent, indicating that especially human adaptation to climate change rather than direct effects of climate change was decisive for the degradation of ecological network quality for breeding meadow birds.

Conclusions

We conclude that scenario studies exploring impacts of climate change on ecological networks should incorporate both land use change resulting from human responses to climate change and direct effects of climate change on landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DR, Link WA, Johnson DH, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildl Manag 65:373–378

    Article  Google Scholar 

  • Bakker M, Alam SJ, Van Dijk J, Rounsevell M, Spek T, Van den Brink A (2014) The feasibility of implementing an ecological network in The Netherlands under conditions of global change. Landscape Ecol. doi:10.1007/s10980-014-0145-5

  • Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Change Biol 18:881–890

    Article  Google Scholar 

  • BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife International, Cambridge

    Google Scholar 

  • BirdLife International (2014) Species factsheet: Limosa limosa. http://www.birdlife.org. Accessed July 2014

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, OÇonner MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655

    Article  CAS  PubMed  Google Scholar 

  • Dale VH, Efroymson RA, Kline KL (2011) The land use-climate change-energy nexus. Landscape Ecol 26:755–773

    Article  Google Scholar 

  • De Vos JA, Van Bakel PJT, Hoving IE, Conijn JG (2006) Waterpas-model: a predictive tool for water management, agriculture and environment. Agric Water Manag 86:187–195

    Article  Google Scholar 

  • Dijkstra H, van Lith-Kranendonk J (2000) Schaalkenmerken van het landschap in Nederland. Monitoring Kwaliteit Groene Ruimte (MKGR). Alterra-report 040. Alterra, Wageningen

  • Diniz-Filho JAF, Rangel TFLVB, Bini LM (2008) Model selection and information theory in geographical ecology. Glob Ecol Biogeogr 17:479–488

    Article  Google Scholar 

  • Dyrcz A, Witkowsk J, Okulewicz J (1981) Nesting of ‘timid’ waders in the vicinity of ‘bold’ ones as an antipredator adaptation. Ibis 123:542–545

    Article  Google Scholar 

  • Field A (2009) Discovering statistics using SPSS, 3rd edn. SAGE Publications Ltd, London

    Google Scholar 

  • Gaucherel C, Griffon S, Misson L, Houet T (2010) Combining process-based models for future biomass assessment at landscape scale. Landscape Ecol 25:201–215

    Article  Google Scholar 

  • Hawkins BA (2012) Eight (and a half) deadly sins of spatial analysis. J Biogeogr 39:1–9

    Article  Google Scholar 

  • Hoogland T, Van den Akker JJH, Brus DJ (2012) Modeling the subsidence of peat soils in the Dutch coastal area. Geoderma 171–172:92–97

    Article  Google Scholar 

  • Jongsomjit D, Stralberg D, Gardali T, Salas L, Wiens J (2013) Between a rock and a hard place: the impacts of climate change and housing development on breeding birds in California. Landscape Ecol 28:187–200

    Article  Google Scholar 

  • Kanellopoulos A, Reidsma P, Wolf J, Van Ittersum MK (2014) Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: an application of benchmarking and bio-economic farm modelling. Eur J Agron 52:69–80

    Article  Google Scholar 

  • Kleijn D, Schekkerman H, Dimmers WJ, Van Kats RJM, Melman D, Teunissen WA (2010) Adverse effects of agricultural intensification and climate change on breeding habitat quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis 152:475–486

    Article  Google Scholar 

  • Kuhlman T, Diogo V, Koomen E (2013) Exploring the potential of reed as a bioenergy crop in the Netherlands. Biomass Bioenergy 55:41–52

    Article  Google Scholar 

  • Londo M, Vleeshouwers L, Dekker J, De Graaf H (2001) Energy farming in Dutch desiccation abatement areas: yields and benefits compared to grass cultivation. Biomass Bioenergy 20:337–350

    Article  Google Scholar 

  • Mandryk M, Reidsma P, Van Ittersum MK (2012) Scenarios of long-term farm structural change for application in climate change impact assessment. Landscape Ecol 27:509–527

    Article  Google Scholar 

  • Melman ThCP, Schotman AGM, Hunink S, De Snoo GR (2008) Evaluation of meadow bird management, especially black-tailed godwit (Limosa limosa L.), in the Netherlands. J Nat Conserv 16:88–95

    Article  Google Scholar 

  • Mustin K, Sutherland WJ, Gill JA (2007) The complexity of predicting climate-induced ecological impacts. Clim Res 35:165–175

    Article  Google Scholar 

  • Opdam P, Luque S, Jones KB (2009) Changing landscapes to accommodate for climate change impacts: a call for landscape ecology. Landscape Ecol 24:715–721

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 412:37–42

    Article  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. B Am Meteorol Soc 81:443–450

    Article  Google Scholar 

  • Parmesan C, Burrows MT, Duarte CM, Poloczanska ES, Richardson AJ, Schoeman DS, Singer MC (2013) Beyond climate change attribution in conservation and ecological research. Ecol Lett 16:58–71

    Article  PubMed  Google Scholar 

  • Querner EP, Jansen PC, Van den Akker JJH, Kwakernaak C (2012) Analysing water level strategies to reduce soil subsidence in Dutch peat meadows. J Hydrol 446:59–69

    Article  Google Scholar 

  • Riordan EC, Rundel PW (2014) Land use compounds habitat losses under projected climate change in a threatened California Ecosystem. PLoS One 9:e86487

    Article  PubMed Central  PubMed  Google Scholar 

  • Runhaar HJ, Witte JPM, Verburg PH (1997) Ground-water level, moisture supply, and vegetation in the Netherlands. Wetlands 17:528–538

    Article  Google Scholar 

  • Sovon VN (2002) Atlas van de Nederlandse broedvogels 1998–2000. Nederlandse fauna 5. Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij and European Invertebrate Survey-Nederland, Leiden

  • SPSS Inc. (2009) PASW Statistics for Windows, Version 18.0. SPSS inc., Chicago

  • Thunnissen HAM, De Wit AJW (2000) The national land cover database of the Netherlands. In: Beek KJ, Molenaar M (eds) Geoinformation for all. XIX congress of the International Society for Photogrammetry and Remote Sensing, Amsterdam, July 2000, International Archives of Photogrammetry and Remote Sensing, vol 13. ISPRS Amsterdam, pp 223–230

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B Biol Sci 270:467–473

    Article  CAS  Google Scholar 

  • Van Bodegom PM, Verboom J, Witte JPM, Vos CC, Bartholomeus RP, Geertsema W, Cormont A, Van der Veen M, Aerts R (2014) Synthesis of ecosystem vulnerability to climate change in the Netherlands shows the need to consider environmental fluctuations in adaptation measures. Reg Environ Change 14:933–942

    Google Scholar 

  • Van den Hurk B, Klein Tank A, Lenderink G, Van Ulden A, Van Oldenborgh GJ, Katsman C, Van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006) KNMI climate changes scenarios 2006 for the Netherlands. Report number WR 2006-01. Royal Dutch Meteorological Institute, De Bilt

  • Van der Vliet RE, Schuller E, Wassen MJ (2008) Avian predators in a meadow landscape: consequences of their occurrence for breeding open-area birds. J Avian Biol 39:523–529

    Article  Google Scholar 

  • Van der Vliet RE, Van Dijk J, Wassen MJ (2010) How different landscape elements limit the breeding habitat of meadow bird species. Ardea 98:203–209

    Article  Google Scholar 

  • Van der Vliet RE, Oquiñena Valluerca I, Van Dijk J, Wassen MJ (2014) EU protection is inadequate for a declining flyway population of Black-tailed Godwit Limosa limosa: mismatch between future core breeding areas and present special protection areas. Bird Conserv Int. doi:10.1017/S0959270914000100

    Google Scholar 

  • Van Teeffelen AJA, Vos CC, Opdam P (2012) Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol Conserv 153:239–253

    Article  Google Scholar 

  • Van Teeffelen AJA, Vos CC, Jochem R, Baveco JM, Meeuwsen H, Hilbers JP (2014) The effectiveness of green infrastructure as a climate adaptation strategy for great crested newt in intensively-used landscapes. Landscape Ecol. doi:10.1007/s10980-014-0079-y

    Google Scholar 

  • Van Turnhout C, Vogel R (1997) The new atlas of Dutch breeding birds 1998–2000. Bird Census News 10:26–32

    Google Scholar 

  • Verboom J, Schippers P, Cormont A, Sterk M, Vos CC, Opdam PFM (2010) Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria. Landscape Ecol 25:1289–1298

    Article  Google Scholar 

  • Verhulst J, Kleijn D, Berendse F (2007) Direct and indirect effects of the most widely implemented Dutch agri-environment schemes on breeding waders. J Appl Ecol 44:70–80

    Article  Google Scholar 

  • Vogelzang TA, Venema GS, De Bont CJAM, Wisman JH, Van Leeuwen MGA (2009) Boeren in het Groene Hart; Kansen voor het agrocluster. Report number 2009–012. LEI Wageningen UR, The Hague

  • Vos CC, Berry P, Opdam P, Baveco H, Nijhof B, O’Hanley J, Bell C, Kuipers H (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45:1722–1731

    Article  Google Scholar 

  • Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189

    Article  PubMed  Google Scholar 

  • Witte JPM, Bartholomeus RP, Van Bodegom PM, Cirkel DG, Van Ek R, Fujita Y, Janssen GMCM, Spek TJ, Runhaar H (2014) A probabilistic eco-hydrological model to predict the effects of climate change on natural vegetation at a regional scale. Landscape Ecol. doi:10.1007/s10980-14-0086-z

Download references

Acknowledgments

JvD was financially supported by the Climate Adaptation for Rural Areas (CARE) Project, which was funded by the Knowledge for Climate Programme (http://knowledgeforclimate.climateresearchnetherlands.nl/climateadaptationforruralareas). SOVON Vogelonderzoek Nederland provided the Dutch relative bird density datasets. Harry Dijkstra, Jetty van Lith-Kranendonk and Jaco van der Gaast (all Alterra Wageningen) provided the openness and groundwater datasets. Mara Baudena kindly assisted with programming the reclassification of the openness maps. Paul Opdam gave very useful suggestions for the presentation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry van Dijk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dijk, J., van der Vliet, R.E., de Jong, H. et al. Modeling direct and indirect climate change impacts on ecological networks: a case study on breeding habitat of Dutch meadow birds. Landscape Ecol 30, 805–816 (2015). https://doi.org/10.1007/s10980-014-0140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0140-x

Keywords

Navigation