Skip to main content

Advertisement

Log in

Landscape geological age explains large scale spatial trends in oribatid mite diversity

Landscape Ecology Aims and scope Submit manuscript

Abstract

To understand the overwhelming species richness in soil the focus of attention has traditionally been on local soil conditions, such as physical and chemical characteristics. Regional factors like landscape history have been largely ignored. The aim of our study was to assess the importance of geological site age and local site conditions on oribatid mite species richness in undisturbed forest soils. We wanted to evaluate the processes underlying spatial changes in oribatid species richness at the regional level. We selected 41 sites across the Netherlands with different forest types, located on soils with varying levels of humidity and nutrient richness. The selected sites formed a clear spatiotemporal gradient in geological site age, ranging from Holocene sites along the west coast and rivers towards Pleistocene sites in the east of the country. Five samples were collected at each site. Oribatid mites were counted and identified to the species level. In total 145 oribatid mite species were recorded. We observed that oribatid mite species richness across sites was positively affected by site age. Soil nutrient status, water availability, soil type, or forest vegetation type had rather a local modulating effect on soil mite diversity. The increase in species diversity with geological site age was mainly due to an increase in sexually-reproducing species, with an apparent high competitive ability, but lower reproduction rate. Our results suggest that spatial patterns of soil animal community diversity and composition can be significantly determined by geologic age at the regional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adams BJ, Bardgett RD, Ayres E, Wall DH, Aislabie J, Bamforth S, Bargagli R, Cary C, Cavacini P, Connell L, Convey P, Fell JW, Frati F, Hogg ID, Newsham KK, O’Donnell A, Russell N, Seppelt RD, Stevens MI (2006) Diversity and distribution of Victoria Land biota. Soil Biol Biochem 38:3003–3018

    Google Scholar 

  • Andrew NR, Rodgerson L, Dunlop M (2003) Variation in invertebrate–bryophyte community structure at different spatial scales along altitudinal gradients. J Biogeogr 30:731–746

    Article  Google Scholar 

  • Bardgett RD (2002) Causes and consequences of biological diversity in soil. Zoology 105:367–374

    Article  PubMed  Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Berg MP (2012) Patterns of biodiversity of fine and small spatial scales. In: Wall DH, Bardgett RD, Behan-Pellletier VB, Herrick JE, Jones H, Ritz K, Six J, Strong DR, van der Putten HW (eds) Soil Ecology and Ecosystem services. Oxford University Press, Oxford, pp 120–129

  • Berg MP, Bengtsson J (2007) Temporal and spatial variability in soil food web structure. Oikos 116:1789–1804

    Article  Google Scholar 

  • Biederman LA, Boutton TW (2010) Spatial variation in biodiversity and trophic structure of soil nematode communities in a subtropical savanna parkland: responses to woody plant encroachment. Appl Soil Ecol 46:168–176

    Article  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Google Scholar 

  • Borges PAV, Brown VK (1999) Effect of island geological age on the arthropod species richness of Azorean pastures. Biol J Linn Soc 66:373–410

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Springer, Wien

    Book  Google Scholar 

  • Cadotte MW, Mai DV, Jantz S, Collins MD, Keele M, Drake JA (2006) On testing the colonisation-competition trade-off in a multispecies assemblage. Am Nat 168:704–709

    Google Scholar 

  • Caruso T, Taormina M, Migliorini M (2012) Relative role of deterministic and stochastic determinants of soil animal community: a spatially explicit analysis of oribatid mites. J Anim Ecol 81:214–221

    Article  PubMed  Google Scholar 

  • Cianciolo JM (2009) Asexual species of oribatid mites do not have a local-scale colonization advantage over sexual species. Evol Ecol Res 11:43–55

    Google Scholar 

  • Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 40:1–25

    Article  PubMed  Google Scholar 

  • Colwell RK (2004) Estimates: statistical estimation of species richness and shared species from samples, Version 7, User’s Guide and application

  • Colwell RK, Coddington JA (1995) Estimating terrestrial biodiversity through extrapolation. In: Hawksworth DL (ed) Biodiversity measurement and estimation. Chapman and Hall, London, pp 101–118

    Google Scholar 

  • Coulson SJ, Hodkinson ID, Webb NR (2003) Aerial dispersal of invertebrates over a High Arctic glacier foreland: Midtre Lovénbreen, Svalbard. Polar Biol 26:530–537

    Article  Google Scholar 

  • Cressie N (1991) Statistics for Spatial Data. John Wiley and Sons, New York

    Google Scholar 

  • Decaëns T (2010) Macroecological patterns in soil communities. Glob Ecol Biogeogr 19:287–302

    Article  Google Scholar 

  • Dormann FC, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Google Scholar 

  • Dunger W, Wanner M, Hauser H, Hohberg K, Schulz HJ, Schwalbe T, Seifert B, Vogel J, Voigtlander K, Zimdars B, Zulka KP (2001) Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia 45:243–271

    Google Scholar 

  • Ellenberg H (1979) Zeigerwerte der Gefäßpflanzen Mitteleuropas. (2. Aufl.). Scripta Geobotanica 9. Goeltze, Goettingen

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Article  Google Scholar 

  • Fattorini S (2010) The influence of geographical and ecological factors on island beta diversity patterns. J Biogeogr 37:1061–1070

    Article  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405:202–227

    Article  Google Scholar 

  • Gergócs V, Hufnagel L (2009) Application of Oribatid mites as indicators. Appl Ecol Environ Res 7:79–98

    Google Scholar 

  • Gisin H (1960) Collembolenfauna Europas. Museum d’Histoire Naturelle, Genève

    Google Scholar 

  • Gorshkov VV, Bakkal IJ, Stavrova NI (1996) Post fire recovery of soil litter in Scots pine forests in two different regions of boreal zone. Silva Fenn 30:209–219

    Google Scholar 

  • Haggett RJ (1998) Soil chronosequences, soil development, and soil evolution: a critical review. Catena 32:155–172

    Article  Google Scholar 

  • Hågvar S, Solhoy T, Mong CE (2009) Primary succession of soil mites (Acari) in a Norwegian glacier foreland, with emphasis on oribatid species. Arct Antarct Alp Res 41:219–227

    Article  Google Scholar 

  • Hansen RA (2000) Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81:1120–1132

    Article  Google Scholar 

  • Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Appl Soil Ecol 9:17–23

    Article  Google Scholar 

  • Heijboer D (2002) Klimaatlas van Nederland: de normaalperiode 1971–2000. Koninklijk Nederlands Meteorologisch Instituut, De Bilt

    Google Scholar 

  • Hodkinson ID, Coulson SJ, Webb NR (2004) Invertebrate community assembly along proglacial chronosequences in the high Arctic. J Anim Ecol 73:556–568

    Article  Google Scholar 

  • Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plants and animals. Oikos 86:393–401

    Article  Google Scholar 

  • Kallimanis AS, Argyropoulou MD, Sgardelis SP (2002) Two scale patterns of spatial distribution of oribatid mites (Acari, Cryptostigmata) in a Greek mountain. Pedobiologia 46:513–525

    Article  Google Scholar 

  • Kappes H, Jabin M, Kulfan J, Zach P, Topp W (2009) Spatial patterns of litter-dwelling taxa in relation to the amounts of coarse woody debris in European temperate deciduous forests. For Ecol Manag 257:1255–1260

    Google Scholar 

  • Kardol P, Newton JS, Bezemer TM, Maraun M, van der Putten WH (2009) Contrasting diversity patterns of soil mites and nematodes in secondary succession. Acta Oecol 35:603–609

    Google Scholar 

  • Kaufmann R, Fuchs M, Gosterxeier N (2002) The Soil Fauna of an Alpine Glacier Foreland: Colonization and Succession. Arct Antarct Alp Res 34:242–250

    Article  Google Scholar 

  • Keating KA, Quinn JF (1998) Estimating species richness: the Michaelis-Menten model revisited. Oikos 81:411–416

    Article  Google Scholar 

  • Khalil MA, Janssens TKS, Berg MP, van Straalen NM (2009) Identification of metal-responsive oribatid mites in a comparative survey of polluted soils. Pedobiologia 52:207–221

    Google Scholar 

  • Kneitel JM, Chase JM (2004) Trade-offs in community ecology: linking spatial scales and species coexistence. Ecol Lett 7:69–80

    Article  Google Scholar 

  • Krab EJ, Orsprong H, Berg MP, Cornelissen JHC (2010) Turning northern peatlands upside down: disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct Ecol 24:1362–1369

    Google Scholar 

  • Krantz GW, Walter DE (2009) A Manual of Acarology, 3rd edn. Texas Technical University Press, Austin

    Google Scholar 

  • Krivolutsky DA (ed) (1995) Oribatid mites. Nauka, Moscow (in Russian)

  • Krivolutsky DA, Lebedeva NV (2004) Oribatid mites (Oribatei, Acariformes) in bird feathers: non-passerines. Acta Zool Lith 14:26–47

    Article  Google Scholar 

  • Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WER (2011) Wind dispersal of oribatid mites as a mode of migration. Pedobiologia 54:201–207

    Google Scholar 

  • Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WER (2012) Active dispersal of oribatid mites into young soils. Appl Soil Ecol 55:10–19

    Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzales A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Google Scholar 

  • Lindberg N, Persson T (2004) Effects of long-term nutrient fertilisation and irrigation on the microarthropod community in a boreal Norway spruce stand. Forest Ecol Manag 188:125–135

    Article  Google Scholar 

  • Lindo Z, Winchester NN (2007) Local-regional boundary shifts in oribatid mite (Acari: Oribatida) communities: species-area relationships in arboreal habitat islands of a coastal temperate rain forest, Vancouver Island, Canada. J Biogeogr 34:1611–1612

    Article  Google Scholar 

  • Lindo Z, Winchester NN (2008) Scale dependent diversity patterns in arboreal and terrestrial oribatid mite (Acari: Oribatida) communities. Ecography 31:53–60

    Article  Google Scholar 

  • Lindo Z, Winchester N (2009) Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia 160:817–825

    Article  PubMed  Google Scholar 

  • Lindroth CHH, Andersson H, Bödvarsson A, Richter SH (1973) Surtsey Iceland. The development of a new fauna 1963–70: terrestrial invertebrates. Entom Scand 5:1–280

    Google Scholar 

  • MapInfo Corp (2006) MapInfo professional for Windows, version 8.5.1. Troy, USA

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383

    Article  Google Scholar 

  • Maraun M, Schatz H, Scheu S (2007) Awesome or ordinary? Global diversity patterns of oribatid mites. Ecography 30:209–216

    Google Scholar 

  • Meyer P, Schmidt M (2011) Accumulation of dead wood in abandoned beech (Fagus sylvatica L.) forests in northwestern Germany. Forest Ecol Manag 261:342–352

    Article  Google Scholar 

  • Mulder C, van Wijnen HJ, van Wezel AP (2005) Numerical abundance and biodiversity of below-ground taxocenes along a pH gradient across the Netherlands. J Biogeogr 32:1775–1790

    Article  Google Scholar 

  • Norton RA, Palmer SC (1991) The distribution, mechanisms, and evolutionary significance of parthenogenesis in oribatid mites. In: Schuster R, Murphy PW (eds) The Acari: Reproduction. Development and Life-History Strategies, Chapman and Hall, London, pp 107–136

    Chapter  Google Scholar 

  • Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term Studies in Ecology: Approaches and Alternatives. Springer, New York, pp 110–135

    Chapter  Google Scholar 

  • Pugh PJA (2003) Have mites (Acarina: Arachnida) colonised Antarctica and the islands of the Southern ocean via air currents? Polar Res 39:239–244

    Google Scholar 

  • Rantalainen ML, Fritze H, Haimi J, Pennanen T, Setala H (2005) Species richness and food web structure of soil decomposer community as affected by the size of habitat fragment and habitat corridors. Glob Change Biol 11:1614–1627

    Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    Google Scholar 

  • Setälä H, Berg MP, Jones TH (2005) Trophic structure and functional redundancy in soil communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 236–249

    Chapter  Google Scholar 

  • Starzomski BM, Parker RL, Srivastava DS (2008) On the relationship between regional and local species richness: a test of saturation theory. Ecology 89:1921–1930

    Article  PubMed  Google Scholar 

  • StatSoft Inc (2003) STATISTICA (data analysis software system), version 6.1. StatSoft Inc, Tulsa, OK, USA

  • Stropp J, ter Steege H, Malhi Y (2009) Disentangling regional and local tree diversity in the Amazon. Ecography 32:46–54

    Article  Google Scholar 

  • Subias LS (2011) Listado sistemático, sinonímico y biogeográfico de los Ácaros Oribátidos (Acariformes: Oribatida) del mundo. Graellsia, 60:3–305 (updated in February 2011)

  • Van der Werf S (1991) Bosgemeenschappen. Natuurbeheer in Nederland. Deel 5. Pudoc Publishers, Wageningen

  • Van Straalen NM, Rijninks PC (1982) The efficiency of Tullgren apparatus with respect to interpreting seasonal changes in age structure of soil arthropod populations. Pedobiologia 24:197–209

    Google Scholar 

  • Vidic NJ (1998) Soil-age relationships and correlations: comparison of chronosequences in the Ljubljana Basin, Slovenia and USA. Catena 34:113–129

    Article  Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644

    Article  PubMed  Google Scholar 

  • Zaitsev AS, Berg MP (2001) Some preliminary distribution maps of oribatid mites of the Netherlands (Acari, Oribatida). Ned Faunist Mededel 15:79–101

    Google Scholar 

  • Zaitsev AS, Wolters V (2006) Geographic determinants of oribatid mite communities structure and diversity across Europe: a longitudinal perspective. Eur J Soil Biol 42:358–361

    Article  Google Scholar 

  • Zaitsev AS, Wolters V, Waldhardt R, Dauber J (2006) Long-term succession of oribatid mites after conversion of croplands to grasslands. Appl Soil Ecol 33:230–239

    Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Dr. D. Krivolutsky (†) and Dr. H. Siepel for checking the taxonomic status of some specimens. We are indebted to S. C. Verhoef, R. Verweij and H. R. Zoomer for their valuable support during the field sampling and laboratory work. Prof. V. Wolters (Justus-Liebig-University, Giessen, Germany) and Dr. R. G. Kuperman (U.S. Army Edgewood Chemical Biological Center, USA) provided valuable comments during the manuscript preparation. A. Zaitsev’s stay in the Netherlands was financially supported by a fellowship of the Faculty of Earth and Life Sciences, VU University, Amsterdam. This publication represents a component of A. Zaitsev’s doctoral thesis at the Justus-Liebig-University Giessen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei S. Zaitsev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 85 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, A.S., van Straalen, N.M. & Berg, M.P. Landscape geological age explains large scale spatial trends in oribatid mite diversity. Landscape Ecol 28, 285–296 (2013). https://doi.org/10.1007/s10980-012-9834-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9834-0

Keywords

Navigation