Skip to main content

Advertisement

Log in

A fuzzy logic method to assess the relationship between landscape patterns and bird richness of the Rolling Pampas

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

The loss of biodiversity in productive ecosystems is a global concern of the last decades. The Rolling Pampas of Argentina is an intensively cropped region that underwent important land use and landscape change, with different impacts on biodiversity of both plants and animals. Land use type and habitat complexity are hypothesized to be the most important factors determining species richness in agro-ecosystems. But it is not easy to define these attributes in an unambiguous fashion, or determine their interactions at different spatial scales. A fuzzy logic approach allows overcoming some of these problems by using linguistic variables and logic rules to relate them and formulate hypothesis. We constructed fuzzy logic models to study how bird species richness in the Rolling Pampas is related to land use and habitat complexity, and how these variables interact at two spatial scales. Results showed that at the local scale, landscape complexity is the most important factor determining species numbers; trees and bodies of water are the most influential complexities. The effect of local scale landscape attributes was modified depending on the context at broader scales, so that agricultural sites were enriched when surrounded by more favorable landscapes. There was a high dispersion in the predicted/observed value relationship, indicating that landscape factors interact in more complex ways than those captured by the models we used. We suggest that the fuzzy logic approach is suitable for working with biological systems, and we discuss the advantages and disadvantages of its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adriaenssens V, Goethals PLM, Pauw ND (2006) Fuzzy knowledge-based models for prediction of Asellus and Gammarus in watercourses in Flanders (Belgium). Ecol Model 195:3–10

    Google Scholar 

  • Azadi H, Jvd Berg, Shahvali M, Hosseininia G (2009) Sustainable rangeland management using fuzzy logic: a case study in Southwest Iran. Agric Ecosyst Environ 131:193–200

    Article  Google Scholar 

  • Baldi G, Paruelo JM (2008) Land-use and land cover dynamics in South American temperate grasslands. Ecol Soc 13(2), Article no 6. http://www.ecologyandsociety.org/vol13/iss2/art6/ES-2008-2481.pdf

  • Batáry P, Matthiesen T, Tscharntke T (2010) Landscape-moderated importance of hedges in conserving farmland bird diversity of organic vs. conventional croplands and grasslands. Biol Conserv 143:2020–2027

    Article  Google Scholar 

  • Beever EA, Swihart RK, Bestelmeyer BT (2006) Linking the concept of scale to studies of biological diversity: evolving approaches and tools. Divers Distrib 12:229–235

    Article  Google Scholar 

  • Bengtsson J, AhnströM J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269

    Article  Google Scholar 

  • Bennett AB, Radford JQ, Haslem A (2006) Properties of land mosaics: implications for nature conservation in agricultural environments. Biol Conserv 133:250–264

    Article  Google Scholar 

  • Benton TG, Vickery JA, Wilson JD (2002) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Article  Google Scholar 

  • BirdLife International (2011) The BirdLife checklist of the birds of the world, with conservation status and taxonomic sources. Version 4. Downloaded from http://www.birdlife.info/im/species/checklist.zip

  • Center B, Verma BP (1998) Fuzzy logic for biological and agricultural systems. Artif Intell Rev 12:213–225

    Article  Google Scholar 

  • Cerezo A, Conde MC, Poggio S (2011) Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodivers Conserv 20:2649–2667

    Article  Google Scholar 

  • Chen Q, Mynett AE (2003) Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake. Ecol Model 162:55–67

    Article  Google Scholar 

  • Cingolani AM, Noy-Meir I, Renison DD, Cabido M (2008) La ganadería extensiva, ¿es compatible con la conservación de la biodiversidad y los suelos? Ecol Aust 18:253–271

    Google Scholar 

  • Codesido M, Fischer CG, Bilenca D (2008) Asociaciones entre diferentes patrones de uso de la tierra y ensambles de aves en agroecosistemas de la Región Pampeana, Argentina. Ornitol Neotrop 19:575–585

    Google Scholar 

  • Comparatore VM, Martínez MM, Vassallo AI, Barg M, Isacch JP (1996) Abundancia y relaciones con el hábitat de aves y mamíferos en pastizales de Paspalum quadrifarium (paja colorada) manejados con fuego (provincia de Buenos Aires, Argentina). Interciencia 21:228–237

    Google Scholar 

  • Concepción ED, Díaz M, Baquero RA (2008) Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landscape Ecol 23:135–148

    Article  Google Scholar 

  • Cueto VR, Casenave JLd (1999) Determinants of bird species richness: role of climate and vegetation structure at a regional scale. J Biogeogr 26:487–492

    Article  Google Scholar 

  • Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Indic 8:691–703

    Article  Google Scholar 

  • Dauber J, Hirsch M, Simmering D, Waldhardt R, Otte A, Wolters V (2003) Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agric Ecosyst Environ 98:321–329

    Article  Google Scholar 

  • Di Giacomo AS, López de Casenave J (2010) Use and importance of crop and field-margin habitats for birds in a neotropical agricultural ecosystem. Condor 112:283–293

    Article  Google Scholar 

  • Dickinson JL, Zuckerberg B, Bonter DN (2010) Citizen science as an ecological research tool: challenges and benefits. Annu Rev Ecol Evol Syst 41:149–172

    Article  Google Scholar 

  • Dubois D, Prade H (1996) What are fuzzy rules and how to use them. Fuzzy Set Syst 84:169–185

    Article  Google Scholar 

  • Ducey MJ, Larson BC (1999) A fuzzy set approach to the problem of sustainability. For Ecol Manage 115:29–40

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel F, Crist TO (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112

    Article  PubMed  Google Scholar 

  • Ferraro DO, Ghersa CM, Sznaider GA (2003) Evaluation of environmental impact indicators using fuzzy logic to assess the mixed cropping systems of the Inland Pampa, Argentina. Agric Ecosyst Environ 96:1–18

    Article  Google Scholar 

  • Filloy J, Bellocq MI (2007) Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric Ecosyst Environ 120:291–298

    Article  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, De Clerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33

    Article  PubMed  Google Scholar 

  • Gabelli FB, Fernández GJ, Ferretti V, Posse G, Coconier E, Gavieiro HJ, Llambías PE, Peláez PI, Vallés ML, Tubaro PL (2004) Range contraction of the pampas meadowlark Sturnella defilippii in the southern pampas grasslands of Argentina. Oryx 38:1–7

    Google Scholar 

  • Ghersa CM, León RJC (2001) Ecología del paisaje pampeano: consideraciones para su manejo y conservación. In: Naveh Z, Lieberman AS (eds) Ecología de Paisajes. Editorial Facultad de Agronomía, Buenos Aires, pp 471–512

    Google Scholar 

  • Ghersa CM, de la Fuente E, Suarez S, Leon RJC (2002) Woody species invasion in the Rolling Pampa grasslands, Argentina. Agric Ecosyst Environ 88:271–278

    Article  Google Scholar 

  • Goijman A, Zaccagnini ME (2008) The effect of habitat heterogeneity on avian density and richness in soybean fields in Entre Ríos, Argentina. Hornero 23:67–76

    Google Scholar 

  • Goldstein MI, Lacher TE, Woodbridge B, Bechard MJ, Canavelli SB, Zaccagnini ME, Cobb GP, Scollon EJ, Tribolet R, Hooper MJ (1999) Monocrotophos-induced mass mortality of Swainson’s hawks in Argentina, 1995–96. Ecotoxicology 8:201–214

    Article  CAS  Google Scholar 

  • Guerschman JP, Paruelo JM, Di Bella C, Giallorenzi MC, Pacin F (2003) Land cover classification in the Argentine Pampas using multi-temporal Landsat TM data. Int J Remote Sens 24:3381–3402

    Article  Google Scholar 

  • Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vilà M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Google Scholar 

  • Jaeger JAG (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol 15:115–130

    Article  Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Article  Google Scholar 

  • Kampichler C, Barthel J, Wieland R (2000) Species density of foliage-dwelling spiders in field margins: a simple, fuzzy rule-based model. Ecol Model 129:87–99

    Article  Google Scholar 

  • Kragten S, Snoo GRd (2008) Field-breeding birds on organic and conventional arable farms in the Netherlands. Agric Ecosyst Environ 126:270–274

    Article  Google Scholar 

  • Lakhani KH (1994) The importance of field margin atributes to birds. En field margins: integrating agriculture and conservation. Monograph 58. Surrey, BCPC, pp 77–84

  • Legendre P, Legendre L (1998) Numerical ecology. Elsvier, Amsterdam, p 844

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology: the Robert H MacArthur Award lecture. Ecology 73:1943–1967

    Article  Google Scholar 

  • Li H, Reynols JF (1995) On definition and quantification of heterogeneity. Oikos 73:280–284

    Article  Google Scholar 

  • Li H, Wu J (2004) Use and misuse of landscape indices. Landscape Ecol 19:389–399

    Article  Google Scholar 

  • Li X, He HS, Bu R, Wen Q, Chang Y, Hu Y, Li Y (2005) The adequacy of different landscape metrics for various landscape patterns. Pattern Recognit 38:2626–2638

    Article  Google Scholar 

  • Liebhold AM, Gurevitch J (2002) Integrating the statistical analysis of spatial data in ecology. Ecography 25:553–557

    Article  Google Scholar 

  • Liu M, Samal S (2002) A fuzzy clustering approach to delineate agroecozones. Ecol Model 149:215–228

    Article  Google Scholar 

  • Lu Y, Fu B, Chen L, Ouyang Z, Xu J (2006) Resolving the conflicts between biodiversity conservation and socioeconomic development in China: fuzzy clustering approach. Biodivers Conserv 15:2813–2827

    Article  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  PubMed  CAS  Google Scholar 

  • Mayer DG, Butler DG (1993) Statistical validation. Ecol Model 68:21–32

    Article  Google Scholar 

  • Narosky T, DiGiacomo AG (1993) Las aves de la Provincia de Buenos Aires: distribución y estatus. Asoc. Ornitológica del Plata, Vázquez Mazzini Ed. y L.O.L.A., Buenos Aires

  • Pedrycz W (1994) Why triangular membership functions? Fuzzy Set Syst 64:21–30

    Article  Google Scholar 

  • Phillis YA, Andriantiatsaholiniaina LA (2001) Sustainability: an ill-defined concept and its assessment using fuzzy logic. Ecol Econ 37:435–456

    Article  Google Scholar 

  • Prato T (2005) A fuzzy logic approach for evaluating ecosystem sustainability. Ecol Model 187:361–368

    Article  Google Scholar 

  • Ralph CJ, Sauer JR, Droege S (1995) Monitoring bird populations by point counts. Gen. Tech. Rep. PSW-GTR-149. Pacific Southwest Research Station, Fores Service, US Department of Agriculture, Albany

  • Rocchini D, Ricotta C (2007) Are landscapes as crisp as we may think? Ecol Model 204:535–539

    Article  Google Scholar 

  • Roschewitz I, Gabriel D, Tscharntke T, Thies C (2005) The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J Appl Ecol 42:873–882

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Nature 287:1170–1174

    Google Scholar 

  • Salski A, Holsten B (2006) A fuzzy and neuro-fuzzy approach to modelling cattle grazing on pastures with low stocking rates in Central Europe. Ecol Inform 1:269–276

    Article  Google Scholar 

  • Sarasola H, Negro JJ (2006) Role of exotic tree stands on the current distribution and social behaviour of Swainson’s hawk, Buteo swainsoni in the Argentine Pampas. J Biogeogr 33:1096–1101

    Google Scholar 

  • Schmida A, Wilson MV (1985) Biological determinants of species diversity. J Biogeogr 12:1–20

    Article  Google Scholar 

  • Schrag AM, Zaccagnini ME, Calamari N, Canavelli S (2009) Climate and land-use influences on avifauna in central Argentina: broad-scale patterns and implications of agricultural conversion for biodiversity. Agric Ecosyst Environ 132:135–142

    Article  Google Scholar 

  • Seastedt TR, Hobbs RJ, Suding KN (2008) Management of novel ecosystems: are novel approaches required? Front Ecol Environ 6:547–553

    Article  Google Scholar 

  • Soriano A (1991) Rio de la Plata grasslands. In: Coupland RT (ed) Introduction and western hemisphere. Elsevier, Amsterdam, pp 367–407

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Turner MG (2005) Landscape ecology: what is the state of the science? Annu Rev Ecol Evol Syst 36:319–344

    Article  Google Scholar 

  • Van Leekwijck W, Kerre EE (1999) Defuzzication: criteria and classification. Fuzzy Set Syst 108:159–178

    Article  Google Scholar 

  • Weibull AC, Östman O (2003) Species composition in agroecosystems: the effect of landscape, habitat, and farm management. Basic Appl Ecol 4:349–361

    Article  Google Scholar 

  • With KA (1994) Using fractal analysis to assess how species perceive landscape structure. Landscape Ecol 9:25–36

    Article  Google Scholar 

  • Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecol 17:761–782

    Article  Google Scholar 

  • Yamada K, Elith J, McCarthy M, Zerger A (2003) Eliciting and integrating expert knowledge for wildlife habitat modelling. Ecol Model 165:251–264

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    Article  Google Scholar 

  • Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4:103–111

    Article  Google Scholar 

  • Zonneveld IS (1989) The land unit—a fundamental concept in landscape ecology, and its applications. Landscape Ecol 3:67–86

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a result of FW Ph.D thesis, he was financed by a fellowship of the CONICET and the FONCYT. The ECOS-SECYT A07B04 grant permitted the exchanges between France and Argentina. The final stay in France of FW was made possible through a grant from the French Embassy and the Ministry of Education of Argentina. G. Rocha and P. Moreyra assisted in bird field surveys. Satellite images where provided by the Laboratory of Regional Analysis and Teledetection (LART-FAUBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Weyland.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weyland, F., Baudry, J. & Ghersa, C.M. A fuzzy logic method to assess the relationship between landscape patterns and bird richness of the Rolling Pampas. Landscape Ecol 27, 869–885 (2012). https://doi.org/10.1007/s10980-012-9735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-012-9735-2

Keywords

Navigation