Skip to main content

Advertisement

Log in

Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

There is growing evidence that climate change causes an increase in variation in conditions for plant and animal populations. This increase in variation, e.g. amplified inter-annual variability in temperature and rainfall has population dynamical consequences because it raises the variation in vital demographic rates (survival, reproduction) in these populations. In turn, this amplified environmental variability enlarges population extinction risk. This paper demonstrates that currently used nature conservation policies, principles, and generic and specific design criteria have to be adapted to these new insights. A simulation shows that an increase in variation in vital demographic rates can be compensated for by increasing patch size. A small, short-lived bird species like a warbler that is highly sensitive to environmental fluctuations needs more area for compensation than a large, long-lived bird species like a Bittern. We explore the conservation problems that would arise if patches or reserve sizes would need to be increased, e.g. doubled, in order to compensate for increase in environmental variability. This issue has serious consequences for nature policy when targets are not met, and asks for new design criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akcakaya HR, Baur B (1996) Effects of population subdivision and catastrophes on the persistence of a land snail metapopulation. Oecologia 105:475–483

    Article  Google Scholar 

  • Barnston AG (1996) Time-scales of the variability of the atmosphere. Int J Climatol 16:499–535

    Article  Google Scholar 

  • Bossuyt B, Honnay O (2006) Interactions between plant life span, seed dispersal capacity and fecundity determine metapopulation viability in a dynamic landscape. Landscape Ecol 21:1195–1205

    Article  Google Scholar 

  • Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83

    Article  CAS  PubMed  Google Scholar 

  • Bowers MA, Harris LC (1994) A large-scale metapopulation model of interspecific competition and environmental-change. Ecol Modell 72:251–273

    Article  Google Scholar 

  • Boyce MS, Haridas CV, Lee CT (2006) Demography in an increasingly variable world. Trends Ecol Evol 21:141–148

    Article  PubMed  Google Scholar 

  • Carpenter S, Walker B, Anderies JM, Abel N (2001) From metaphor to measurement: resilience of what to what? Ecosystems 4:765–781

    Article  Google Scholar 

  • Cobben MMP, Smulders MJM, Opdam P, Hoekstra RF, Verboom J (in prep.) Comparison of demographic and genetic consequences of climate change induced range shifting

  • Den Boer PJ (1986) Environmental heterogeneity and the survival of natural populations. In: Proceedings of the 3rd European congress of entomology. KNAW, Amsterdam, pp 345–356

  • Diaz S, Fargione J, Chapin FS, Tilman D (2006) Biodiversity loss threatens human well-being. PLoS Biol 4:1300–1305

    Article  CAS  Google Scholar 

  • Drake JM (2005) Population effects of increased climate variation. Proc R Soc Lond B Biol Sci 272:1823–1827

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Foppen R, ter Braak CJF, Verboom J, Reijnen R (1999) Dutch sedge warblers Acrocephalus schoenobaenus and West-African rainfall: empirical data and simulation modelling show low population resilience in fragmented marshlands. Ardea 87:113–127

    Google Scholar 

  • Foppen RPB, Chardon JP, Liefveld W (2000) Understanding the role of sink patches in source-sink metapopulations: Reed Warbler in an agricultural landscape. Conserv Biol 14:1881–1892

    Article  Google Scholar 

  • Fraterrigo JM, Pearson SM, Turner MG (2009) Joint effects of habitat configuration and temporal stochasticity on population dynamics. Landscape Ecol 24:863–877

    Article  Google Scholar 

  • Gordon A, Simondson D, White M, Moilanen A, Bekessy SA (2009) Integrating conservation planning and landuse planning in urban landscapes. Landsc Urban Plan 91:183–194

    Article  Google Scholar 

  • Groot Bruinderink G, Van Der Sluis T, Lammertsma D, Opdam P, Pouwels R (2003) Designing a coherent ecological network for large mammals in northwestern Europe. Conserv Biol 17:549–557

    Article  Google Scholar 

  • Grotan V, Saether BE, Filli F, Engen S (2008) Effects of climate on population fluctuations of ibex. Glob Chang Biol 14:218–228

    Article  Google Scholar 

  • Grotan V, Saether BE, Engen S, van Balen JH, Perdeck AC, Visser ME (2009) Spatial and temporal variation in the relative contribution of density dependence, climate variation and migration to fluctuations in the size of great tit populations. J Anim Ecol 78:447–459

    Article  PubMed  Google Scholar 

  • Hengeveld R, Hemerik L (2002) Biogeography and dispersal. In: Bullock JM, Kenward RE, Hails RS (eds) Dispersal ecology: 42nd symposium of the British Ecological Society. Cambridge University Press, Cambridge, pp 303–326

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc Lond 58:247–276

    Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455

    Article  Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. Proc R Soc Lond B Biol Sci 269:2163–2171

    Article  CAS  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contributions of working group I to the third assessment report of the intergovernmental panel on climate change

  • IPCC (2007) Climate change 2007: Synthesis report.73

  • Jones HL, Diamond JM (1976) Short-time-base studies of turnover in breeding bird populations on California Channel Islands. Condor 78:526–549

    Article  Google Scholar 

  • Jongman RHG, Pungetti G (2004) Ecological networks and greenways: concept, design, implementation. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Kindvall O (1996) Habitat heterogeneity and survival in a bush cricket metapopulation. Ecology 77:207–214

    Article  Google Scholar 

  • Lack D (1954) The natural regulation of animal numbers. Clarendon Press, Oxford

    Google Scholar 

  • Lande R (1988) Demographic models of the Northern Spotted Owl (Strix-Occidentalis-Caurina). Oecologia 75:601–607

    Article  Google Scholar 

  • Lewontin RC, Cohen D (1969) On population growth in a randomly varying environment. In: Proceedings of the National Academy of Sciences of the United States of America, vol 62, pp 1056–1060

  • McLaughlin JF, Hellmann JJ, Boggs CL, Ehrlich PR (2002) Climate change hastens population extinctions. Proc Natl Acad Sci USA 99:6070–6074

    Article  CAS  PubMed  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Morris WF, Pfister CA, Tuljapurkar S, Haridas CV, Boggs CL, Boyce MS, Bruna EM, Church DR, Coulson T, Doak DF, Forsyth S, Gaillard JM, Horvitz CC, Kalisz S, Kendall BE, Knight TM, Lee CT, Menges ES (2008) Longevity can buffer plant and animal populations against changing climatic variability. Ecology 89:19–25

    Article  PubMed  Google Scholar 

  • Mortberg UM, Balfors B, Knol WC (2007) Landscape ecological assessment: a tool for integrating biodiversity issues in strategic environmental assessment and planning. J Environ Manag 82:457–470

    Article  CAS  Google Scholar 

  • Nassauer JI, Opdam P (2008) Design in science: extending the landscape ecology paradigm. Landscape Ecol 23:633–644

    Article  Google Scholar 

  • NEAA (2008) Nature Balance 2008 (in Dutch). Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands

    Google Scholar 

  • Opdam P, Steingröver E (2008) Designing metropolitan landscapes for biodiversity: deriving guidelines from metapopulation ecology. Landsc J 27:69–80

    Article  Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  • Opdam P, Verboom J, Pouwels R (2003) Landscape cohesion: an index for the conservation potential of landscapes for biodiversity. Landscape Ecol 18:113–126

    Article  Google Scholar 

  • Opdam P, Luque S, Jones KB (2009) Changing landscapes to accommodate for climate change impacts: a call for landscape ecology. Landscape Ecol 24:715–721

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Piessens K, Adriaens D, Jacquemyn H, Honnay O (2009) Synergistic effects of an extreme weather event and habitat fragmentation on a specialised insect herbivore. Oecologia 159:117–126

    Article  PubMed  Google Scholar 

  • Piha H, Luoto M, Piha M, Merila J (2007) Anuran abundance and persistence in agricultural landscapes during a climatic extreme. Glob Chang Biol 13:300–311

    Article  Google Scholar 

  • Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592

    Article  PubMed  Google Scholar 

  • Reijnen R, Harms WB, Foppen RPB, De Visser R, Wolfert HP (1995) Ecological networks in river rehabilitation scenarios: a case study for the Lower Rhine. RIZA, Lelystad, The Netherlands

    Google Scholar 

  • Remmert H (ed) (1994) Minimum animal populations. Springer, Berlin, Germany

    Google Scholar 

  • Robert A (2009) The effects of spatially correlated perturbations and habitat configuration on metapopulation persistence. Oikos 118:1590–1600

    Article  Google Scholar 

  • Saether BE, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. Birds Clim Change 35:185–209

    Article  Google Scholar 

  • Schippers P, Snep RPH, Schotman AGM, Jochem R, Stienen EWM, Slim PA (2009) Seabird metapopulations: searching for alternative breeding habitats. Popul Ecol 51:459–470

    Article  Google Scholar 

  • Shaffer ML (1987) Minimum viable populations: coping with uncertainty. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, pp 69–86

    Chapter  Google Scholar 

  • Snep RPH, Ottburg FGWA (2008) The ‘habitat backbone’ as strategy to conserve pioneer species in dynamic port habitats: lessons from the natterjack toad (Bufo calamita) in the Port of Antwerp (Belgium). Landscape Ecol 23:1277–1289

    Article  Google Scholar 

  • Soulé M (ed) (1987) Viable populations for conservation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sutcliffe OL, Thomas CD, Yates TJ, GreatorexDavies JN (1997) Correlated extinctions, colonizations and population fluctuations in a highly connected ringlet butterfly metapopulation. Oecologia 109:235–241

    Article  Google Scholar 

  • Thomas CD (1990) What do real population-dynamics tell us about minimum viable population sizes. Conserv Biol 4:324–327

    Article  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    Article  CAS  Google Scholar 

  • Traill LW, Bradshaw CJA, Brook BW (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol Conserv 139:159–166

    Article  Google Scholar 

  • Van der Sluis T, Pedroli B (2004) Ecological network analysis for Umbria (Italy) RERU, Rete ecologica della regione Umbria. Alterra report 1013. Alterra, Wageningen, The Netherlands

    Google Scholar 

  • Van der Sluis T, Bunce RGH, Kuipers H, Dirksen J (2003) Networks for life. Ecological network analysis for Cheshire County (UK). Alterra report 698. Alterra, Wageningen, The Netherlands

    Google Scholar 

  • Van Rooij SAM, Steingröver EG, Opdam PFM (2003) Networks for life. Scenario development of an ecological network in Cheshire County (UK). Alterra report 699. Alterra, Wageningen, The Netherlands

    Google Scholar 

  • Verboom J, Pouwels R (2004) Ecological functioning of ecological networks: a species perspective. In: Jongman RHG, Pungetti G (eds) Ecological networks and greenways: concept, design, implementation. Cambridge University Press, Cambridge, UK, pp 65–72

    Google Scholar 

  • Verboom J, Foppen R, Chardon P, Opdam P, Luttikhuizen P (2001) Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds. Biol Conserv 100:89–101

    Article  Google Scholar 

  • Vermaat JE, Vigneau N, Omtzigt N (2008) Viability of meta-populations of wetland birds in a fragmented landscape: testing the key-patch approach. Biodivers Conserv 17:2263–2273

    Article  Google Scholar 

  • Vos CC, Verboom J, Opdam PFM, Ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41

    Article  CAS  PubMed  Google Scholar 

  • Vos CC, Opdam P, Steingröver E, Reijnen R (2007) Transferring ecological knowledge to landscape planning: a design method for robust corridors. In: Wu J, Hobbs R (eds) Key topics in landscape ecology. Cambridge University Press, New York, USA, pp 227–245

    Chapter  Google Scholar 

  • Vos CC, Berry P, Opdam P, Baveco H, Nijhof B, O’Hanley J, Bell C, Kuipers H (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45:1722–1731

    Article  Google Scholar 

  • Vos CC, Van der Hoek DJ, Vonk M (submitted) Designing a climate corridor for wetland ecosystems as an adaptation strategy to climate change

  • Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Roy DB, Telfer MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Davies JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  CAS  PubMed  Google Scholar 

  • Wu J (2008) Changing perspectives on biodiversity conservation: from species protection to regional sustainability. Biodivers Sci 16:205–213

    Google Scholar 

Download references

Acknowledgments

We thank Ruud Foppen and Chris van Turnhout of SOVON Dutch Centre for Field Ornithology for fruitful discussion. This research was funded by the Dutch national research program ‘Climate Changes Spatial Planning’ and is part of the strategic research program ‘Sustainable spatial development of ecosystems, landscapes, seas and regions’ (Project Ecological Resilience) which is funded by the Dutch Ministry of Agriculture, Nature Conservation and Food Quality, and carried out by Wageningen University and Research centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Verboom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verboom, J., Schippers, P., Cormont, A. et al. Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria. Landscape Ecol 25, 1289–1298 (2010). https://doi.org/10.1007/s10980-010-9497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-010-9497-7

Keywords

Navigation