Skip to main content
Log in

Landscape connectivity and predator–prey population dynamics

Landscape Ecology Aims and scope Submit manuscript

Abstract

Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benson DL, Sherratt JA, Maini PK (1993) Diffusion driven instability in an inhomogeneous domain. Bull Math Biol 55(2):365–384

    Google Scholar 

  • Blasius B, Huppert A, Stone L (1999) Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399:356–359

    Article  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-H (2006) Complex networks: structure and dynamics. Phys Rep 424(4–5):175–308

    Article  Google Scholar 

  • Bodin Ö, Norberg J (2007) A network approach for analyzing spatially structured populations in fragmented landscape. Landscape Ecol 22(1):31–44

    Article  Google Scholar 

  • Bolker BM (2003) Combining endogenous and exogenous spatial variability in analytical population models. Theor Popul Biol 64(3):255–270

    Article  PubMed  Google Scholar 

  • Breckling B, Middelhoff U, Reutera H (2006) Individual-based models as tools for ecological theory and application: Understanding the emergence of organisational properties in ecological systems. Ecol Modell 194(1–3):102–113

    Article  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836

    Article  Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83(403):569–610

    Article  Google Scholar 

  • Cominsa HN, Hassell MP (1996) Persistence of multispecies host–parasitoid interactions in spatially distributed models with local dispersal. J Theor Biol 183(1):19–28

    Article  Google Scholar 

  • Coppolillo P, Gomez H, Maisels F, Wallace R (2004) Selection criteria for suites of landscape species as a basis for site-based conservation. Biol Conserv 115(3):419–430

    Article  Google Scholar 

  • Creel S, Winnie J Jr, Maxwell B, Hamlin K, Creel M (2005) Elk alter habitat selection as an antipredator response to wolves. Ecology 86(12):3387–3397

    Article  Google Scholar 

  • Crucitti P, Latora V, Marchiori M, Rapisarda A (2004) Error and attack tolerance of complex networks. Physica A 340(1–3):388–394

    Article  Google Scholar 

  • Cuddington KM, Yodzis P (2000) Diffusion-limited predator–prey dynamics in euclidean environments: an allometric individual-based model. Theor Popul Biol 58(4):259–278

    Article  CAS  PubMed  Google Scholar 

  • da Fontoura Costa L, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1–2):167–242

    Article  Google Scholar 

  • DeAngelis DL, Mooij WM (2005) Individual-based modeling of ecological and evolutionary processes. Annu Rev Ecol Evol Syst 36:147–168

    Article  Google Scholar 

  • Droz M, Pekalski A (2001) Coexistence in a predator-prey system. Phys Rev E 63(5), 051909.051901-051909.051906

  • Estrada E, Bodin Ö (2008) Using network centrality measures to manage landscape connectivity. Ecol Appl 18(7):1810–1825

    Article  PubMed  Google Scholar 

  • Fahrig L (1998) When does fragmentation of breeding habitat affect population survival? Ecol Modell 105(2–3):273–292

    Article  Google Scholar 

  • Fahrig L, Nuttle WK (2005) Population ecology in spatially heterogeneous environments. In: Lovett GM, Turner MG, Jones CG, Weathers KC (eds) Ecosystem function in heterogeneous landscapes. Springer, New York

  • Fischhoff IR, Sundaresan SR, Cordingley J, Rubenstein DI (2007) Habitat use and movements of plains zebra (Equus burchelli) in response to predation danger from lions. Behav Ecol 18(4):725–729

    Article  Google Scholar 

  • Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Modell 198(1–2):115–126

    Article  Google Scholar 

  • Hastings A (2001) Transient dynamics and persistence of ecological systems. Ecol Lett 4(3):215–220

    Article  Google Scholar 

  • Hilty JA, Lidicker WZ Jr, Merenlender AM (2006) Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Island Press, Washington, DC

    Google Scholar 

  • Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456(7395):792–794

    Article  CAS  PubMed  Google Scholar 

  • Hovel KA, Regan HM (2008) Using an individual-based model to examine the roles of habitat fragmentation and behavior on predator–prey relationships in seagrass landscapes. Landscape Ecol 23(Suppl 1):75–89

    Article  Google Scholar 

  • Inchausti P, Ballesteros S (2008) Intuition, functional responses and the formulation of predator–prey models when there is a large disparity in the spatial domains of the interacting species. J Anim Ecol 77(5):891–897

    Article  CAS  PubMed  Google Scholar 

  • Ioannou CC, Ruxton GD, Krause J (2008) Search rate, attack probability, and the relationship between prey density and prey encounter rate. Behav Ecol 19(4):842–846

    Article  Google Scholar 

  • Ives AR, Dobson AP (1987) Antipredator behavior and the population dynamics of simple predator-prey systems. Am Nat 130(3):431–447

    Article  Google Scholar 

  • Jansen VAA (2001) The dynamics of two diffusively coupled predator–prey populations. Theor Popul Biol 59(2):119–131

    Article  CAS  PubMed  Google Scholar 

  • Kareiva P (1987) Habitat fragmentation and the stability of predator–prey interactions. Nature 326:388–390

    Article  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87(19), 198701-198701 198701-198704

    Google Scholar 

  • Lima SL (2002) Putting predators back into behavioral predator–prey interactions. Trends Ecol Evol 17(2):70–75

    Article  Google Scholar 

  • Linhares A (1999) Synthesizing a predatory search strategy for VLSI layouts. IEEE Trans Evol Comput 3(2):147–152

    Article  Google Scholar 

  • Luttberg B, Schmitz OJ (2000) Predator and prey models with flexible individual behavior and imperfect information. Am Nat 155(5):669–683

    Article  Google Scholar 

  • McCauley E, Wilson WG, de Roos AM (1993) Dynamics of age-structured and spatially structured predator–prey interactions: individual-based models and population-level formulations. Am Nat 142(3):412–442

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin JF, Roughgarden JD (1991) Pattern and stability in predator-prey communities: how diffusion in spatially variable environments affects the Lotka-Volterra model. Theor Popul Biol 40(2):148–172

    Article  Google Scholar 

  • Michalski F, Peres CA (2005) Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol Conserv 124(3):383–396

    Article  Google Scholar 

  • Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17(6):1771–1782

    Article  PubMed  Google Scholar 

  • Minor ES, Urban DL (2008) A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22(2):297–307

    Article  PubMed  Google Scholar 

  • Nelson EH, Matthews CE, Rosenheim JA (2004) Predators reduce prey population growth by inducing changes in prey behavior. Ecology 85(7):1853–1858

    Article  Google Scholar 

  • Nonaka E, Holme P (2007) Agent-based model approach to optimal foraging in heterogeneous landscapes: effects of patch clumpiness. Ecography 30(6):777–788

    Article  Google Scholar 

  • Ortega-Huerta MA, Medley KE (1999) Landscape analysis of jaguar (Panthera onca) habitat using sighting records in the Sierra de Tamaulipas, Mexico. Environ Conserv 26(4):257–269

    Article  Google Scholar 

  • Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the priorization of habitat patches and corridors for conservation. Landscape Ecol 21(7):959–967

    Article  Google Scholar 

  • Planesa S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. PNAS (0808007106v1-pnas.0808007106)

  • Rougharden JD (1977) Patchiness in the spatial distribution of a population caused by stochastic fluctuations in resources. Oikos 29(1):52–59

    Article  Google Scholar 

  • Rougharden JD (1978) Influence of competition on patchiness in a random environment. Theor Popul Biol 14(2):185–203

    Article  Google Scholar 

  • Terborgh J, Estes JA, Paquet P, Ralls K, Boyd-Heger D, Miller BJ, Noss RF (1999) The role of top carnivores in regulating terrestrial ecosystems. In: Soule ME, Terborgh J (eds) Continental conservation: scientific foundations of regional reserve networks. Island Press, Washington, DC

    Google Scholar 

  • Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218

    Article  Google Scholar 

  • Urban DL, Minor ES, Treml EA, Schick R (2009) Graph models of habitat mosaics. Ecol Lett 12(3):260–273

    Article  PubMed  Google Scholar 

  • Wilson WG (1998) Resolving discrepancies between deterministic population models and individual-based simulations. Am Nat 151(2):116–134

    Article  CAS  PubMed  Google Scholar 

  • With KA, Pavuk DM, Worchuck JL, Oates RK, Fisher JL (2002) Threshold effects of landscape structure on biological control in agroecosystems. Ecol Appl 12(1):52–65

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees as well as the financial support of Arizona State University to facilitate the first author to visit ASU during the first half of 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo A. Baggio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4985 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baggio, J.A., Salau, K., Janssen, M.A. et al. Landscape connectivity and predator–prey population dynamics. Landscape Ecol 26, 33–45 (2011). https://doi.org/10.1007/s10980-010-9493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-010-9493-y

Keywords

Navigation