Skip to main content

Advertisement

Log in

Sacrificing patches for linear habitat elements enhances metapopulation performance of woodland birds in fragmented landscapes

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

It is generally assumed that large patches of natural habitat are better for the survival of species than the same amount of habitat in smaller fragments or linear elements like hedges and tree rows. We use a spatially explicit individual-based model of a woodland bird to explore this hypothesis. We specifically ask whether mixtures of large, small and linear habitat elements are better for population performance than landscapes that consist of only large elements. With equal carrying capacity, metapopulations perform equally or better in heterogeneous landscape types that are a mix of linear, large and small habitat elements. We call this increased metapopulation performance of large and small elements “synergy”. These mixed conditions are superior because the small linear elements facilitate dispersal while patches secure the population in the long run because they have a lower extinction risk. The linear elements are able to catch and guide dispersing animals which results in higher connectivity between patches leading to higher metapopulation survival. Our results suggest that landscape designers should not always seek to conserve and create larger units but might better strive for more variable landscapes with mixtures of patch sizes and shapes. This is especially important when smaller units play a key role in connecting patches and dispersal through the matrix is poor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baveco JM (2006) Small steps movement model: manual Version 1.0. Alterra-Wageningen UR, Wageningen, p 19

    Google Scholar 

  • Baz A, GarciaBoyero A (1996) The SLOSS dilemma: a butterfly case study. Biodivers Conserv 5:493–502. doi:10.1007/BF00056393

    Article  Google Scholar 

  • Bender DJ, Tischendorf L, Fahrig L (2003) Using patch isolation metrics to predict animal movement in binary landscapes. Landscape Ecol 18:17–39. doi:10.1023/A:1022937226820

    Article  Google Scholar 

  • PJd Boer (1981) On the survival of populations in a heterogeneous and variable environment. Oecologia 50:39–53. doi:10.1007/BF00378792

    Article  Google Scholar 

  • Chardon JP, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.). Landscape Ecol 18:561–573. doi:10.1023/A:1026062530600

    Article  Google Scholar 

  • Engen S, Lande R, Seather BE (2003) Demographic stochasticity and allee effects in populations with two sexes. Ecology 84:2378–2386. doi:10.1890/02-0123

    Article  Google Scholar 

  • Etienne RS, Heesterbeek JAP (2000) On optimal size and number of reserves for metapopulation persistence. J Theor Biol 203:33–50. doi:10.1006/jtbi.1999.1060

    Article  PubMed  CAS  Google Scholar 

  • Flather CH, Bevers M (2002) Patchy reaction-diffusion and population abundance: the relative importance of habitat amount and arrangement. Am Nat 159:40–56. doi:10.1086/324120

    Article  PubMed  Google Scholar 

  • Grashof-Bokdam CJ, Chardon P, Vos CC, Foppen RPB, Wallisdevries MF, VanDerVeen M, Meeuwsen HAM (2008) The synergistic effect of combining woodlands and green veining for biodiversity. Landscape Ecol. doi:10.1007/s10980-008-9274-2

    Google Scholar 

  • Grashof-Bokdam CJ, van Langevelde F (2005) Green veining: landscape determinants of biodiversity in European agricultural landscapes. Landscape Ecol 20:417–439. doi:10.1007/s10980-004-5646-1

    Article  Google Scholar 

  • Haddad NM (1999) Corridor and distance effects on interpatch movements: a landscape experiment with butterflies. Ecol Appl 9:612–622. doi:10.1890/1051-0761(1999)009[0612:CADEOI]2.0.CO;2

    Article  Google Scholar 

  • Kingsland SE (2002) Creating a science of nature reserve design: perspectives from history. Environ Model Assess 7:61–69. doi:10.1023/A:1015633830223

    Article  Google Scholar 

  • Kosenko SM, Kaigorodova EY (2001) Effect of habitat fragmentation on distribution, density and breeding performance of the middle spotted woodpecker Dendrocopos medius (Alves, Picidae) in Nerussa-Desna Polesye. Zool Zh 80:71–78

    Google Scholar 

  • Kosinski Z, Ksit P (2006) Comparative reproductive biology of middle spotted woodpeckers Dendrocopos medius and great spotted woodpeckers D-major in a riverine forest. Bird Study 53:237–246

    Article  Google Scholar 

  • Langlois JP, Fahrig L, Merriam G, Artsob H (2001) Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecol 16:255–266. doi:10.1023/A:1011148316537

    Article  Google Scholar 

  • Lomolino MV (1994) An evaluation of alternative strategies for building networks of nature-reserves. Biol Conserv 69:243–249. doi:10.1016/0006-3207(94)90423-5

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • McCarthy MA, Thompson CJ, Possingham HP (2005) Theory for designing nature reserves for single species. Am Nat 165:250–257. doi:10.1086/427297

    Article  PubMed  Google Scholar 

  • McCarthy MA, Thompson CJ, Williams NSG (2006) Logic for designing nature reserves for multiple species. Am Nat 167:717–727. doi:10.1086/503058

    Article  PubMed  Google Scholar 

  • Müller W (1982) Die Besiedlung der Eichenwälder im Kanton Zurich durch den Mittelspecht Dendrocopus medius. Orn Beob 79:105–119

    Google Scholar 

  • Ovaskainen O (2002) Long-term persistence of species and the SLOSS problem. J Theor Biol 218:419–433

    PubMed  Google Scholar 

  • Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagoes. Biol J Linn Soc Lond 28:65–82. doi:10.1111/j.1095-8312.1986.tb01749.x

    Article  Google Scholar 

  • Pettersson B (1985) Extinction of an isolated population of the middle spotted woodpecker Dendrocopos-Medius (L) in Sweden and its relation to general theories on extinction. Biol Conserv 32:335–353. doi:10.1016/0006-3207(85)90022-9

    Article  Google Scholar 

  • Ricketts TH (2001) The matrix matters: Effective isolation in fragmented landscapes. Am Nat 158:87–99. doi:10.1086/320863

    Article  PubMed  CAS  Google Scholar 

  • Saether BE, Sutherland WJ, Engen S (2004) Climate influences on avian population dynamics. In: Moller AP, Fielder W, Berthold P (eds) Birds and climate change, pp 185–209

  • Schippers P, Verboom J, Knaapen JP, vanApeldoorn RC (1996) Dispersal and habitat connectivity in complex heterogeneous landscapes: an analysis with a GIS-based random walk model. Ecography 19:97–106. doi:10.1111/j.1600-0587.1996.tb00160.x

    Article  Google Scholar 

  • Schultz CB, Crone EE (2005) Patch size and connectivity thresholds for butterfly habitat restoration. Conserv Biol 19:887–896. doi:10.1111/j.1523-1739.2005.00462.x

    Article  Google Scholar 

  • Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134. doi:10.2307/1308256

    Article  Google Scholar 

  • Soule M (1987) Viable populations for conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Tellería JL, Baquero R, Santos T (2003) Effects of forest fragmentation on European birds: implications of regional differences in species richness. J Biogeogr 30:621–628. doi:10.1046/j.1365-2699.2003.00960.x

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi:10.1038/nature02121

    Article  PubMed  CAS  Google Scholar 

  • Thomas CD, Kunin WE (1999) The spatial structure of populations. J Anim Ecol 68:647–657. doi:10.1046/j.1365-2656.1999.00330.x

    Article  Google Scholar 

  • Tischendorf L, Bender DJ, Fahrig L (2003) Evaluation of patch isolation metrics in mosaic landscapes for specialist vs. generalist dispersers. Landscape Ecol 18:41–50. doi:10.1023/A:1022908109982

    Article  Google Scholar 

  • Tischendorf L, Irmler U, Hingst R (1998) A simulation experiment on the potential of hedgerows as movement corridors for forest carabids. Ecol Modell 106:107–118. doi:10.1016/S0304-3800(97)00186-5

    Article  Google Scholar 

  • Tischendorf L, Wissel C (1997) Corridors as conduits for small animals: attainable distances depending on movement pattern, boundary reaction and corridor width. Oikos 79:603–611. doi:10.2307/3546904

    Article  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B Biol Sci 270:467–473. doi:10.1098/rspb.2002.2246

    Article  CAS  Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecol Appl 12:354–363

    Google Scholar 

  • Van Apeldoorn RC, Knaapen JP, Schippers P, Verboom J, Engen van H, Meeuwsen H (1998) Landscape planning and conservation biology; simulation models as tools to evaluate scenarios for badger in the Netherlands. Landscape Urban Plan 41:57–69. doi:10.1016/S0169-2046(97)00058-3

    Article  Google Scholar 

  • VanDorp D, Schippers P, Groenendael van JM (1997) Migration rates of grassland plants along corridors in fragmented landscapes assessed with a cellular automation model. Landscape Ecol 12:39–50. doi:10.1007/BF02698206

    Article  Google Scholar 

  • Verboom J, Foppen R, Chardon P, Opdam P, Luttikhuizen P (2001) Introducing the key patch approach for habitat networks with persistent populations: an example for marshland birds. Biol Conserv 100:89–101. doi:10.1016/S0006-3207(00)00210-X

    Article  Google Scholar 

  • Vos CC, Verboom J, Opdam PFM, Ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41. doi:10.1086/317004

    Article  PubMed  CAS  Google Scholar 

  • Wiens JA (1995) Landscape mosaics and ecological theory. In: Hansson L, Fahrig L, Merriam G (eds) Mosaic landscapes and ecological processes. Chapman and Hall, London, pp 1–26

    Google Scholar 

Download references

Acknowledgments

This research was financed by the program “Vernieuwend Ruimtegebruik” of Habiforum and co-financed by the Dutch Ministry of Agriculture, Nature and Food Quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schippers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schippers, P., Grashof-Bokdam, C.J., Verboom, J. et al. Sacrificing patches for linear habitat elements enhances metapopulation performance of woodland birds in fragmented landscapes. Landscape Ecol 24, 1123–1133 (2009). https://doi.org/10.1007/s10980-008-9313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-008-9313-9

Keywords

Navigation