Skip to main content
Log in

Residual force enhancement in skeletal muscles: one sarcomere after the other

Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The force–length relation is one of the most prominent features of striated muscles, and predicts that the force produced by a fully activated muscle is proportional to the overlap between myosin and actin filaments within sarcomeres. However, there are situations in which the force–length relation deviates from predictions based purely on filament overlap. Notably, stretch of activated skeletal muscles induces a long-lasting increase in force, which is larger than the force produced during isometric contractions at a similar length. The mechanism behind this residual force enhancement and deviations from the original force–length relation are unknown, generating heated debate in the literature. We performed a series of experiments with short segments of myofibrils and isolated sarcomeres to investigating the mechanisms of the residual force enhancement and the force length-relation. In this paper, evidence will be presented showing that force enhancement is caused by: (i) half-sarcomere non-uniformities, and (ii) a sarcomeric component, which may be associated with Ca2+-induced stiffness of titin molecules. These mechanisms have large implications for understanding the basic mechanisms of muscle contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbot BC, Aubert X (1952) The force exerted by active striated muscle during and after change of length. J Physiol 117:77–86

    Google Scholar 

  • Bagni MA, Cecchi G, Colombini B, Colomo F (2002) A non-cross-bridge stiffness in activated frog muscle fibers. Biophys J 82:3118–3127

    Article  PubMed  CAS  Google Scholar 

  • Bagni MA, Cecchi G, Colomo F, Garzella P (1994) Development of stiffness precedes cross-bridge attachment during the early tension rise in single frog muscle fibres. J Physiol 481(Pt 2):273–278

    PubMed  CAS  Google Scholar 

  • Bagni MA, Colombini B, Geiger P, Berlinguer PR, Cecchi G (2004) Non-cross-bridge calcium-dependent stiffness in frog muscle fibers. Am J Physiol Cell Physiol 286:C1353–C1357

    Article  PubMed  CAS  Google Scholar 

  • Brown LM, Hill L (1991) Some observations on variations in filament overlap in tetanized muscle fibres and fibres stretched during a tetanus, detected in the electron microscope after rapid fixation. J Muscle Res Cell Motil 12:171–182

    Article  PubMed  CAS  Google Scholar 

  • Campbell SG, Hatfield PC, Campbell KS (2011) A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement. PLoS Comput Biol 7:e1002156

    Article  PubMed  CAS  Google Scholar 

  • Colombini B, Benelli G, Nocella M, Musaro A, Cecchi G, Bagni MA (2009) Mechanical properties of intact single fibres from wild-type and MLC/mIgf-1 transgenic mouse muscle. J Muscle Res Cell Motil 30:199–207

    Article  PubMed  Google Scholar 

  • Colomo F, Piroddi N, Poggesi C, te Kronnie G, Tesi C (1997) Active and passive forces of isolated myofibrils from cardiac and fast skeletal muscle of the frog. J Physiol 500(Pt 2):535–548

    PubMed  CAS  Google Scholar 

  • Cornachione AS, Rassier DE (2012) A non-cross-bridge, static tension is present in permeabilized skeletal muscle fibers after active force inhibition or actin extraction. Am J Physiol Cell Physiol 302:C566–C574

    Article  PubMed  CAS  Google Scholar 

  • de Tombe PP, Mateja RD, Tachampa K, Ait MY, Farman GP, Irving TC (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48:851–858

    Article  PubMed  Google Scholar 

  • Edman KA, Elzinga G, Noble MI (1982) Residual force enhancement after stretch of contracting frog single muscle fibers. J Gen Physiol 80:769–784

    Article  PubMed  CAS  Google Scholar 

  • Edman KA, Tsuchiya T (1996) Strain of passive elements during force enhancement by stretch in frog muscle fibres. J Physiol 490(Pt 1):191–205

    PubMed  CAS  Google Scholar 

  • Fukuda N, Sasaki D, Ishiwata S, Kurihara S (2001) Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank–Starling mechanism of the heart. Circulation 104:1639–1645

    Article  PubMed  CAS  Google Scholar 

  • Getz EB, Cooke R, Lehman SL (1998) Phase transition in force during ramp stretches of skeletal muscle. Biophys J 75:2971–2983

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    PubMed  CAS  Google Scholar 

  • Herzog W, Lee EJ, Rassier DE (2006) Residual force enhancement in skeletal muscle. J Physiol 574:635–642

    Article  PubMed  CAS  Google Scholar 

  • Joumaa V, Leonard TR, Herzog W (2008a) Residual force enhancement in myofibrils and sarcomeres. Proc Biol Sci 275:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Joumaa V, Rassier DE, Leonard TR, Herzog W (2008b) The origin of passive force enhancement in skeletal muscle. Am J Physiol Cell Physiol 294:C74–C78

    Article  PubMed  CAS  Google Scholar 

  • Julian FJ, Morgan DL (1979) The effect on tension of non-uniform distribution of length changes applied to frog muscle fibres. J Physiol 293:379–392

    PubMed  CAS  Google Scholar 

  • Kulke M, Fujita-Becker S, Rostkova E, Neagoe C, Labeit D, Manstein DJ, Gautel M, Linke WA (2001) Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils. Circ Res 89:874–881

    Article  PubMed  CAS  Google Scholar 

  • Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H (2003) Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci USA 100:13716–13721

    Article  PubMed  CAS  Google Scholar 

  • Lombardi V, Piazzesi G (1990) The contractile response during steady lengthening of stimulated frog muscle fibres. J Physiol 431:141–171

    PubMed  CAS  Google Scholar 

  • Martyn DA, Gordon AM (2001) Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle. Biophys J 80:2798–2808

    Article  PubMed  CAS  Google Scholar 

  • Morgan DL (1990) New insights into the behavior of muscle during active lengthening. Biophys J 57:209–221

    Article  PubMed  CAS  Google Scholar 

  • Morgan DL (1994) An explanation for residual increased tension in striated muscle after stretch during contraction. Exp Physiol 79:831–838

    PubMed  CAS  Google Scholar 

  • Morgan DL, Whitehead NP, Wise AK, Gregory JE, Proske U (2000) Tension changes in the cat soleus muscle following slow stretch or shortening of the contracting muscle. J Physiol 522(Pt 3):503–513

    Article  PubMed  CAS  Google Scholar 

  • Nocella M, Colombini B, Bagni MA, Bruton J, Cecchi G (2012) Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle. J Muscle Res Cell Motil 32:403–409

    Article  PubMed  CAS  Google Scholar 

  • Pavlov I, Novinger R, Rassier DE (2009) The mechanical behavior of individual sarcomeres of myofibrils isolated from rabbit psoas muscle. Am J Physiol Cell Physiol 297:C1211–C1219

    Article  PubMed  CAS  Google Scholar 

  • Pinniger GJ, Ranatunga KW, Offer GW (2006) Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke. J Physiol 573:627–643

    Article  PubMed  CAS  Google Scholar 

  • Piroddi N, Tesi C, Pellegrino MA, Tobacman LS, Homsher E, Poggesi C (2003) Contractile effects of the exchange of cardiac troponin for fast skeletal troponin in rabbit psoas single myofibrils. J Physiol 552:917–931

    Article  PubMed  CAS  Google Scholar 

  • Pun C, Syed A, Rassier DE (2010) History-dependent properties of skeletal muscle myofibrils contracting along the ascending limb of the force–length relationship. Proc Biol Sci 277:475–484

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW, Roots H, Pinniger GJ, Offer GW (2010) Crossbridge and non-crossbridge contributions to force in shortening and lengthening muscle. Adv Exp Med Biol 682:207–221

    Article  PubMed  CAS  Google Scholar 

  • Rassier DE (2008) Pre-power stroke cross bridges contribute to force during stretch of skeletal muscle myofibrils. Proc Biol Sci 275:2577–2586

    Article  PubMed  Google Scholar 

  • Rassier DE, Pun C (2010) Stretch and shortening of skeletal muscles activated along the ascending limb of the force-length relation. Adv Exp Med Biol 682:175–189

    Google Scholar 

  • Rassier DE, Herzog W, Pollack GH (2003) Dynamics of individual sarcomeres during and after stretch in activated single myofibrils. Proc Biol Sci 270:1735–1740

    Article  PubMed  Google Scholar 

  • Rassier DE, Pavlov I (2012) Force produced by isolated sarcomeres and half-sarcomeres after an imposed stretch. Am J Physiol Cell Physiol 302:C240–C248

    Article  PubMed  CAS  Google Scholar 

  • Roots H, Offer GW, Ranatunga KW (2007) Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions. J Muscle Res Cell Motil 28:123–139

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto Y, Suzuki M, Ishiwata S (2008) Length-dependent activation and auto-oscillation in skeletal myofibrils at partial activation by Ca2+. Biochem Biophys Res Commun 366:233–238

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto Y, Suzuki M, Mikhailenko SV, Yasuda K, Ishiwata S (2009) Inter-sarcomere coordination in muscle revealed through individual sarcomere response to quick stretch. Proc Natl Acad Sci USA 106:11954–11959

    Article  PubMed  CAS  Google Scholar 

  • Sokolov SY, Grinko AA, Tourovskaia AV, Reitz FB, Yakovenko O, Pollack GH, Blyakhman FA (2003) ‘Minimum average risk’ as a new peak-detection algorithm applied to myofibrillar dynamics. Comput Methods Programs Biomed 72:21–26

    Article  PubMed  Google Scholar 

  • Sosa H, Popp D, Ouyang G, Huxley HE (1994) Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Biophys J 67:283–292

    Article  PubMed  CAS  Google Scholar 

  • Sugi H, Tsuchiya T (1988) Stiffness changes during enhancement and deficit of isometric force by slow length changes in frog skeletal muscle fibres. J Physiol 407:215–229

    PubMed  CAS  Google Scholar 

  • Talbot JA, Morgan DL (1996) Quantitative analysis of sarcomere non-uniformities in active muscle following a stretch. J Muscle Res Cell Motil 17:261–268

    Article  PubMed  CAS  Google Scholar 

  • Telley IA, Denoth J, Stussi E, Pfitzer G, Stehle R (2006a) Half-sarcomere dynamics in myofibrils during activation and relaxation studied by tracking fluorescent markers. Biophys J 90:514–530

    Article  PubMed  CAS  Google Scholar 

  • Telley IA, Stehle R, Ranatunga KW, Pfitzer G, Stussi E, Denoth J (2006b) Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no ‘sarcomere popping’. J Physiol 573:173–185

    Article  PubMed  CAS  Google Scholar 

  • ter Keurs HE, Iwazumi T, Pollack GH (1978) The sarcomere length–tension relation in skeletal muscle. J Gen Physiol 72:565–592

    Article  PubMed  Google Scholar 

  • Tesi C, Piroddi N, Colomo F, Poggesi C (2002) Relaxation kinetics following sudden Ca(2+) reduction in single myofibrils from skeletal muscle. Biophys J 83:2142–2151

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Fuchs F (2001) Interfilament spacing, Ca2+ sensitivity, and Ca2+ binding in skinned bovine cardiac muscle. J Muscle Res Cell Motil 22:251–257

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H (2001) Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1. Biophys J 81:2297–2313

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the “Canadian Institutes of Health Research” and the “Natural Sciences and Engineering Research Council” of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilson E. Rassier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rassier, D.E. Residual force enhancement in skeletal muscles: one sarcomere after the other. J Muscle Res Cell Motil 33, 155–165 (2012). https://doi.org/10.1007/s10974-012-9308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-012-9308-7

Keywords

Navigation