Skip to main content
Log in

First-order phase transformation and structural studies in Se85In15−xZnx chalcogenide glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Present research work describes the crystallization kinetics and structural studies in Se85In15−xZnx chalcogenide glasses. Bulk alloys of Se85In15−xZnx were synthesized by melt-quenching procedure. High resolution X-ray diffraction (HRXRD) was used to confirm the amorphous nature of synthesized samples. Non-isothermal differential scanning calorimetry (DSC) measurements were performed at 5, 10, 15, 20 and 25 K min−1 heating rates to study kinetics of crystallization in Se85In15−xZnx. Various crystallization parameters such as glass transition (T g), onset crystalline (T c), peak crystallization (T p) and melting temperature (T m) were calculated from DSC curves. The activation energies of structural relaxation (ΔE t) and crystallization (ΔE c) were determined by using Kissinger, Moynihan and Ozawa approaches. ΔE t is found to be the lowest for Se85In6Zn9 sample which shows this sample has the highest probability of escape to a state of lower configurational energy and has greater stability. Thermal stability of various compositions was studied and found to vary with Zn content. Further, HRXRD and field emission scanning electron microscope were used for the study of first phase transformation in Se85In15−xZnx samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burunkova J, Csarnovics I, Denisyuk I, Daróczi L, Kökényesi S. Enhancement of laser recording in gold/amorphous chalcogenide and gold/acrylate nanocomposite layers. J Non-Cryst Solids. 2014;402:200–3.

    Article  CAS  Google Scholar 

  2. Xu H, He Y, Wang X, Nie Q, Zhang P, Xu T, Dai S, Zhang X, Tao G. Preparation of low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications. Infrared Phys Technol. 2014;65:77–82.

    Article  CAS  Google Scholar 

  3. Sanghera JS, Shaw LB, Aggarwal ID. Applications of chalcogenide glass. Comptes Rendus Chim Fibers. 2002;5:873–83.

    Article  CAS  Google Scholar 

  4. Konagai M, Kushiya K. Development of Cu(InGa)Se2 Thin-film solar cells. In: Hamakawa Y, editor. Thin-film solar cells. Springer series in photonics, vol. 3. New York: Springer; 2004. p. 183–210.

    Chapter  Google Scholar 

  5. Jeffrey M, IIday FO, Wise FW, Aitken BG. Highly non linear Ge–As–Se and Ge–As–S–Se glasses for All optical switching. IEEE Photonics Technol Lett. 2002;14(06):822–4.

    Article  Google Scholar 

  6. Anne ML, Keirsse J, Nazabai V, Hyodo K, Inoue S, Pledel CB, Lhermite H, Charrier J, Yanakata K, Loreal O, Person JL, Colas F, Compere C, Bereau B. Chalcogenide glass optical waveguide for infrared biosensing. Sensors. 2009;9:7398–411.

    Article  CAS  Google Scholar 

  7. Coq DL, Pledel CB, Fonteneau G, Pain T, Bureau B, Adam JL. Chalcogenide double index fibers: fabrication, design and application as a chemical sensor. Mater Res Bull. 2003;38(13):1745–54.

    Article  Google Scholar 

  8. Schubert J, Schoning MJ, Mourzina YG, Legin AV, Vlasov YG, Zendor W, Luth H. Multicomponent thin films for electrochemical sensor applications prepped by pulsed laser deposition. Sensor Actuatores. 2001;76:327–30.

    Article  CAS  Google Scholar 

  9. Cha DH, Kim HJ, Park HS, Hwang Y, Kim JH, Hong JH, Lee KS. Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications. Appl Opt. 2010;49(9):1607–13.

    Article  Google Scholar 

  10. Ovshinisky SR, Fritzsche H. Amorphous semiconductors for switching memory and imaging application. IEEE Trans Electron. 1973;20:91–105.

    Article  Google Scholar 

  11. Frumar M, Frumarova B, Wagner T, Hrdlicka M. Phase change memory materials—composition, structure and properties. J Mater. 2007;18:169–74.

    Google Scholar 

  12. Malek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochem Acta. 1995;267:61–73.

    Article  CAS  Google Scholar 

  13. Joraid AA. Limitation of the Johnson-Mehl-Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochem Acta. 2005;436(1–2):78–82.

    Article  CAS  Google Scholar 

  14. Huang F, Xu Y, Chen L, Nie Q, Zhang S, Dai S. Crystallization behavior of 70GeS2–20In2S3–10CsI chalcohalide glass with silver addition. J Therm Anal Calorim. 2014;117(3):1271–6.

    Article  CAS  Google Scholar 

  15. Sharma N, Sharma S, Sharma V, Sharma P. Thermal analysis of quaternary Ge–Se–Sb–Te chalcogenide alloys. J Therm Anal Calorim. 2015;119:213–8.

    Article  CAS  Google Scholar 

  16. Sherchenkov A, Kozyukhin S, Babic A. Estimation of kinetic parameters for the phase change memory materials by DSC measurements. J Therm Anal Calorim. 2014;117:1509–16.

    Article  CAS  Google Scholar 

  17. Musahwar N, Khan W, Husain M, Zulfequar M, Khan MAM. Non-isothermal kinetic analysis on the crystallization process in Se–S glassy system. J Therm Anal Calorim. 2012;110(2):823–9.

    Article  CAS  Google Scholar 

  18. Bilanych VS, Onyshchak VB, Rizak IM, Scach KC, Flachbart K, Rizak VM. Investigation of thermal properties of the Ge–As–Se glasses by differential scanning calorimetry with heat flow harmonic modulation. J Non- Cryst Solids. 2013;366:46–53.

    Article  Google Scholar 

  19. Kumar R, Sharma P, Barman PB, Sharma V, Katyal SC, Ramgra VS. Thermal stability and crystallization kinetics of Se–Te–Sn alloys using differential scanning calorimetry. J Therm Anal Calorim. 2012;110:1053–60.

    Article  CAS  Google Scholar 

  20. Svoboda R, Brandova D, Malek J. Crystallization behavior of GeSb2Se4 chalcogenide glass. J Non-Cryst Solids. 2014;388:46–54.

    Article  CAS  Google Scholar 

  21. Naqvi FM, Saxena NS. Kinetics of phase transition and thermal stability in Se80−x Te20Zn x glasses. J Therm Anal Calorim. 2012;108(3):1161–9.

    Article  CAS  Google Scholar 

  22. Chandel N, Mehta N. Thermal analysis for study of influence of Cd, In and Sb on glass transition kinetics in glassy Se80Te20 alloy using DSC technique. J Therm Anal Calorim. 2014;15(2):1273–8.

    Article  Google Scholar 

  23. Abdel- Rahim MA, Hafiz MM, Mahmoud AZ. Crystallization kinetics of overlapping phases in Se70Te15Sb15 using isoconversional methods. Prog Nat Sci Mater Int. 2015;25(2):169–77.

    Article  CAS  Google Scholar 

  24. Al-Agel FA, Khan SA, Al-Arfaj EA, Al-Ghamdi AA. Kinetics of non-isothermal crystallization and glass transition phenomena in Ga10Se87Pb3 and Ga10Se84Pb6 chalcogenide glasses by DSC. J Non-Cryst Solids. 2012;358:564–70.

    Article  CAS  Google Scholar 

  25. Khan SA, Khan ZH, Zulfequar M, Husain M. Kinetics study of a Se80Te20−x Pb x using non-isothermal crystallization. Phys B. 2007;400:180–4.

    Article  CAS  Google Scholar 

  26. Khan SA, Al-Hazmi FS, Faidah AS, Yaghmour SJ, Al-Sanosi AM, Al-Ghamdi AA. Kinetics of Se75S25−x Cd x glassy system using differential scanning calorimeter. J Alloys Compd. 2009;484:649–53.

    Article  CAS  Google Scholar 

  27. Khan SA, Lal JK, Al-Agel FA, Alvi MA. Non-isothermal crystallization in Ga15Se85−x Ag x chalcogenide glass by differential scanning calorimetry. J Alloys Compd. 2013;554:227–31.

    Article  CAS  Google Scholar 

  28. Khan SA, Zulfequar M, Husain M. Crystallization kinetics of a-Ga5Se95−x Sb x . J Phys Chem Solids. 2002;63(10):1787–96.

    Article  CAS  Google Scholar 

  29. Khan SA, Al-Hazmi FS, Faidah AS, Al-Ghamdi AA. Calorimetric studies of the crystallization process in a-Se75S25−x Ag x chalcogenide glasses. Curr Appl Phys. 2009;9(3):567–72.

    Article  Google Scholar 

  30. Frumar M, Wagner T. Ag doped chalcogenide glasses and their applications. Curr Opin Solid State Mater Sci. 2003;7(2):117–26.

    Article  CAS  Google Scholar 

  31. Saraswat S, Sharma SD. Investigation of Silver as chemical modifier for tailoring of some physico-chemical properties in inorganic glassy Se80Te20 alloy. Glass Phys Chem. 2015;41(4):402–9.

    Article  CAS  Google Scholar 

  32. Al-Ghamdi AA, Al-Heniti S, Khan SA. Structural, optical and electrical characterization of Ag doped lead chalcogenide (PbSe) thin films. J Lumi. 2013;135:295–300.

    Article  CAS  Google Scholar 

  33. Kaelin M, Rudmann D, Tiwari AN. Low cost processing of CIGS thin film solar cells. Sol Energy. 2004;77:749–56.

    Article  CAS  Google Scholar 

  34. Jost S, Hergert F, Hock R, Schulze J, Kirbs A, Voß T, Purwins M. The formation of CuInSe2 thin film solar cell absorbers from electroplated precursors with varying selenium content. Sol Energy Mater Sol Cells. 2007;91(18):1669–75.

    Article  CAS  Google Scholar 

  35. Khadka DB, JunHo Kim JH. Structural transition and band gap tuning of Cu2(Zn, Fe)SnS4 chalcogenide for photovoltaic application. J Phys Chem C. 2014;118(26):14227–37.

    Article  CAS  Google Scholar 

  36. Singh AK. Recent advances in amorphous semiconductors-a correlative study on se-based metallic chalcogenide alloys. Rev Adv Sci Eng. 2012;1:292–301.

    Article  Google Scholar 

  37. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–58.

    Google Scholar 

  38. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;7:212–24.

    Article  Google Scholar 

  39. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  40. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  41. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  42. Takhor RL. Advances in nucleation and crystallization of glasses. Columbus: American Ceramic Society; 1972. p. 166–72.

    Google Scholar 

  43. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1986;88:11–34.

    Article  CAS  Google Scholar 

  44. Moynihan CT, Easteal AJ, Wilder J, Tucker J. Dependence of the glass transition temperature on heating and cooling rate. J Phys Chem. 1974;78(26):2673–7.

    Article  CAS  Google Scholar 

  45. Abdel Rahim MA. Crystallization kinetics of selenium-tellerium glasses. J Mater Sci. 1992;27:1757–61.

    Article  CAS  Google Scholar 

  46. Joshi SR, Pratap A, Saxena NS. Heating rate and composition dependence of the glass transition temperature of a ternary chalcogenide glass. J Mater Sci Lett. 1994;13:77–9.

    Article  CAS  Google Scholar 

  47. Khan ZA, Khan SA, Alvi MA. Study of glass transition and crystallization behavior in Ga15Se85−x Pb x chalcogenide glasses. Acta Phys Polinica A. 2013;123:80–6.

    Article  CAS  Google Scholar 

  48. Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.

    Article  CAS  Google Scholar 

  49. Nidhi AV, Modgil V, Rangra VS. Effect of Sb substitution on thermal behaviour of Te–Se–Ge glassy system. J Therm Anal Calorim. 2015;121(2):559–65.

    Article  CAS  Google Scholar 

  50. El-Fadl AA, Hafiz MM, Wakkad MM, Aashour AS. Calorimetric studies of crystallization process in Cu10Se90 and Cu20Se80 chalcogenide glasses. Phys B. 2007;398:118–25.

    Article  Google Scholar 

  51. Al Ghamdi AA, Alvi MA, Khan SA. Non-isothermal crystallization kinetics study on Ga15Se85−x Ag x chalcogenide glasses by using differential scanning calorimetry. J Alloys Compd. 2011;509:2087–93.

    Article  CAS  Google Scholar 

  52. Abdel Rahim MA, Hafiz MM, Shamekh AM. A study of crystallization kinetics of some Ge–Se–In glasses. Phys B. 2005;369:143–54.

    Article  CAS  Google Scholar 

  53. Othman AA, Aly KA, Abousehly AM. Crystallization kinetics in new Sb14As29Se52Te5 amorphous glasses. Solid State Commun. 2006;138:184–9.

    Article  CAS  Google Scholar 

  54. Shaaban ER, Kansal I, Shapaan M, Ferreir JMF. Thermal stability and crystallization kinetics of ternary Se–Te–Sb semiconducting glassy alloys. J Therm Anal Calorim. 2009;98:347.

    Article  CAS  Google Scholar 

  55. Kumar S, Singh K. Glass transition, thermal stability and glass-forming tendency of Se90−x Te5Sn5In x multi-component chalcogenide glasses. Thermochim Acta. 2012;528:32–7.

    Article  CAS  Google Scholar 

  56. Soliman AA. Thermal stability of Cu0.3(SSe20)0.7 chalcogenide glass by differential scanning calorimetry. Thermochim Acta. 2004;423(1–2):71–6.

    Article  CAS  Google Scholar 

  57. Vazquez J, Lopez-Alemany PL, Villares P, Jimenez-Garay R. Evaluation of the glass forming ability in some alloys in the Sb–As–Se system by differential scanning calorimetry. J Alloy Compd. 2003;354(1–2):153–8.

    Article  CAS  Google Scholar 

  58. Chander R, Thangaraj R. Study of thermal parameters of Sn10Sb20Se70−x Te x chalcogenide glasses. Chalcogenide Lett. 2008;5(10):229–37.

    CAS  Google Scholar 

  59. Jain PK, Deepika, Saxena NS. Glass transition, thermal stability and glass forming ability of Se90In10−x Sb x chalcogenide glasses. Philos Mag. 2009;89:641–50.

    Article  CAS  Google Scholar 

  60. Mehta N, Kumar A. Comparative analysis of calorimetric studies in Se90M90−x (M=In, Te, Sb) chalcogenide glasses. J Therm Anal Calorim. 2007;87:345–50.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to UGC, New Delhi, India, for providing financial support in form of Major Research Project (F. No. 42-780/2013 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamshad A. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Tiwari, S.N., Upadhyay, A.N. et al. First-order phase transformation and structural studies in Se85In15−xZnx chalcogenide glasses. J Therm Anal Calorim 129, 1435–1444 (2017). https://doi.org/10.1007/s10973-017-6273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6273-9

Keywords

Navigation