Skip to main content
Log in

The effect of organoclay and graphene on the crystallization of PP in ABS/PP blends

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present research, the isothermal and non-isothermal crystallization of polypropylene (PP) phase in PP-rich poly(acrylonitrile–butadiene–styrene)/polypropylene (ABS/PP) blends was studied. The effect of nanofillers’ incorporation and specialty of organically modified montmorillonite (OMMT) and graphene, into the prepared blends on the isothermal and non-isothermal crystallization of PP phase, were investigated. Moreover, kinetic study of their isothermal crystallization process was carried out, by applying the Avrami equation. The addition of ABS to the PP matrix increased the crystallization rate of PP at 130 °C. The incorporation of OMMT in pure PP accelerated slightly the crystallization process, whereas in ABS/PP blends, it seemed to retard crystallization, due to interactions between ABS phase and organoclay. The incorporation of graphene in pure PP accelerated impressively its isothermal crystallization, while the addition of ABS in graphene/PP nanocomposite slowed down the crystallization rate of PP. The effect of ABS and nanofillers, separately or in combination, on the crystallization of PP phase was reflected on the kinetic parameters of the Avrami equation. Regarding the non-isothermal crystallization, ABS/PP blends presented higher crystallization temperature (T c) compared to pure PP. The organoclay reinforcement did not have any obvious effect on this temperature, whereas graphene caused significant increase, acting as nucleating agent. The presence of ABS to PP increased the concentration of the β-crystalline phase, reaching its maximum value at 30 mass% ABS content. The organoclay decreased the β-PP in ABS/PP blends, whereas graphene eliminated it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kalaitzidou K, Fukushima H, Askeland P, Drzal LT. The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites. J Mater Sci. 2008;43:2895–907.

    Article  CAS  Google Scholar 

  2. Huang H, Hang B, Wang L, Miao N, Mo H, Zhou N-L, Ma Z-M, Zhang J, Shen J. Crystallization kinetics of polypropylene composites filled with nano calcium carbonate modified with maleic anhydride. J Appl Polym Sci. 2011;119:1516–27.

    Article  CAS  Google Scholar 

  3. Medellín-Rodríguez FJ, Mata-Padilla JM, Hsiao BS, Waldo-Mendoza MA, Ramírez-Vargas E, Sánchez-Valdes S. The effect of nanoclays on the nucleation, crystallization, and melting mechanisms of isotactic polypropylene. Polym Eng Sci. 2007;47:1889–97.

    Article  Google Scholar 

  4. Shu Q, Zou X, Dai W, Fu Z. Formation of β-iPP in isotactic polypropylene/acrylonitrile-butadiene-styrene blends: effect of resin type, phase composition, and thermal condition. J Macromol Sci Part B Phys. 2012;51:756–66.

    Article  CAS  Google Scholar 

  5. Wang C, Zhang Z, Du Y, Zhang J, Mai K. Effect of acrylonitrile-butadiene-styrene copolymer (ABS) on β-nucleation in β-nucleated polypropylene/ABS blends. Polym Bull. 2012;69:847–59.

    Article  CAS  Google Scholar 

  6. Chunyan C, Zishou Z, Qian D, Xin D, Kancheng M. From α- to β-crystallization in multi-walled carbon nanotubes-filled polypropylene nanocomposites. J Therm Anal Calorim. 2015;119:1781–91.

    Article  Google Scholar 

  7. Ma J, Zhang S, Qi Z, Li G, Hu Y. Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J Appl Polym Sci. 2002;83:1978–85.

    Article  CAS  Google Scholar 

  8. Avella M, Cosco S, Volpe GD, Errico ME. Crystallization behavior and properties of exfoliated isotactic polypropylene/organoclay nanocomposites. Adv Polym Technol. 2005;24:132–44.

    Article  CAS  Google Scholar 

  9. He J-D, Cheung MK, Yang M-S, Qi Z. Thermal stability and crystallization kinetics of isotactic polypropylene/organomontmorillonite nanocomposites. J Appl Polym Sci. 2003;89:3404–15.

    Article  CAS  Google Scholar 

  10. Achaby ME, Arrakhiz FE, Vaudreuil S, Qaiss AK, Bousmina O, Fassi-Fehri M. Mechanical, thermal, and rheological properties of graphene-based polypropylene nanocomposites prepared by melt mixing. Polym Compos. 2012;33:733–44.

    Article  Google Scholar 

  11. Molnár J, Menyhárd A. Separation of simultaneously developing polymorphic modifications by stepwise crystallization technique in non-isothermal calorimetric experiments. J Therm Anal Calorim. 2016;124:1463–9.

    Article  Google Scholar 

  12. Menyhárd A, Dora G, Horváth Z, Faludi G, Varga J. Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim. 2012;108:613–20.

    Article  Google Scholar 

  13. Xu JZ, Liang YY, Huang HD, Zhong GJ, Lei J, Chen C, Li ZM. Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res. 2012;19:9975–82.

    Article  Google Scholar 

  14. Gedler G, Antunes M, Realinho V, Velasco JL (2012) Novel polycarbonate-graphene nanocomposite foams prepared by CO2 dissolution, 6th EEIGM international conference on advanced materials research, IOP conf series: materials science and engineering. doi:10.1088/1757-899X/31/1/012008.

  15. Gedler G, Antunes M, Realinho V, Velasco JI. Thermal Stability of polycarbonate-graphene nanocomposites foams. Polym Degrad Stab. 2012;97:1297–304.

    Article  CAS  Google Scholar 

  16. Shen B, Zhai W, Tao M, Lu D, Zheng W. Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Comp Sci Technol. 2013;77:87–94.

    Article  CAS  Google Scholar 

  17. Song P, Liu L, Fu S, Yu Y, Jin C, Wu Q, Zhang Y, Li Q. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites. Nanotechnology. 2013;. doi:10.1088/0957-4484/24/12/125704.

    Google Scholar 

  18. Polschikov SV, Nedorezova PM, Klyamkina AN, Kovalchuk AA, Aladyshev AM, Shchegolikhin AN, Shevchenko VG, Muradyan VE. Composite materials of graphene nanoplatelets and polypropylene, prepared by in situ polymerization. J Polym Sci. 2012;127:904–11.

    Google Scholar 

  19. Park HJ, Meyer J, Roth S, Skákalová V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon. 2010;48:1088–94.

    Article  CAS  Google Scholar 

  20. Steurer P, Wissert R, Thomann R, Mülhaupt R. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol Rapid Commun. 2009;30:316–27.

    Article  CAS  Google Scholar 

  21. Ferreira CI, Dal Castel C, Oviedoc MAS, Mauler RS. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta. 2013;553:40–8.

    Article  CAS  Google Scholar 

  22. Dai J, Shen Y, Yang J-H, Huang T, Zhang N, Wang Y. Crystallization and melting behaviors of polypropylene admixed by graphene and β-phase nucleating agent. Colloid Polym Sci. 2014;292:923–33.

    Article  CAS  Google Scholar 

  23. Zhao S, Chen F, Zhao C, Huang Y, Dong J-Y, Han CC. Interpenetrating network formation in isotactic polypropylene/graphene composites. Polymer. 2013;54:3680–90.

    Article  CAS  Google Scholar 

  24. Milani M, González D, Ouijada R, Basso NRS, Cerrada ML, Azambuja D, Galland GB. Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol. 2013;84:1–7.

    Article  CAS  Google Scholar 

  25. An J-E, Jeon GW, Jeong YG. Preparation and properties of polypropylene nanocomposites reinforced with exfoliated graphene. Fiber Polym. 2012;13:507–14.

    Article  CAS  Google Scholar 

  26. Kuvardina EV, Novokshonova LA, Lomakin SM, Timan SA, Tchmutin IA. Effect of the graphite nanoplatelet size on the mechanical, thermal, and electrical properties of polypropylene/exfoliated graphite nanocomposites. J Appl Polym Sci. 2013;128:1417–23.

    CAS  Google Scholar 

  27. Song P, Cao Z, Cai Y, Zhao L, Fang Z, Fu S. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer. 2011;52:4001–10.

    Article  CAS  Google Scholar 

  28. Wang H, Ren P-G, Chen Y-H, Yan D-X, Li Z-M, Xu L. Effects of dodecyl amine functionalized graphene oxide on the crystallization behavior of isotactic polypropylene. J Appl Polym Sci. 2014;. doi:10.1002/app.40000.

    Google Scholar 

  29. Raka L, Sorrentino A, Bogoeva-Gaceva G. Isothermal crystallization kinetics of polypropylene-latex based nanocomposites with organo-modified clay. J Polym Sci Part B Polym Phys. 2010;48:1927–38.

    Article  CAS  Google Scholar 

  30. Liu X, He A, Du K, Han CC. Isothermal Crystallization behavior of exfoliated-PP/IMMT nanocomposites via in situ polymerization. J Polym Sci Part B Polym Phys. 2009;47:2215–25.

    Article  CAS  Google Scholar 

  31. Perez CJ, Alvarez VA. Overall crystallization behavior of polypropylene-clay nanocomposites; effect of clay content and polymer/clay compatibility on the bulk crystallization and spherulitic growth. J Appl Polym Sci. 2009;114:3248–60.

    Article  CAS  Google Scholar 

  32. Roumeli E, Nianias N, Filippousi M, Avgeropoulos A, Chrissafis K, Papageorgiou GZ, Bikiaris DN. Combined and distinct contributions of different carbon nano-forms in polypropylene. Macromol Mater Eng. 2015;300:611–26.

    Article  CAS  Google Scholar 

  33. Chafidz A, Kaavessina M, Al-Zahrani A, Al-Otaibi MN. Polypropylene/organoclay nanocomposites prepared using a laboratory mixing extruder (LME): crystallization, thermal stability and dynamic mechanical properties. J Polym Res. 2014;2:483–500.

    Article  Google Scholar 

  34. Raka L, Bogoeva-Gaceva G, Loos J. Characterization of polypropylene/layered silicate nanocomposites prepared by single-step extrusion. J Therm Anal Calorim. 2010;100:629–39.

    Article  CAS  Google Scholar 

  35. Ou B, Ou Y, Li D, Jing B, Gao Y, Zhou Z, Liu Q. Isothermal crystallization and melting behaviors of nano TiO2-modified polypropylene/polyamide 6 blends. Polym Compos. 2012;33:1054–63.

    Article  CAS  Google Scholar 

  36. Chen J-B, Xu J-Z, Pang H, Zhong G-J, Xu L, Tang H, Tang J-H, Li Z-M. Crystallization of isotactic polypropylene inside dense networks of carbon nanofillers. J Appl Polym Sci. 2014;. doi:10.1002/app.3950.

    Google Scholar 

  37. Reyes-de Vaaben S, Aguilar A, Avalos F, Ramos-de Valle LF. Carbon nanoparticles as effective nucleating agents for polypropylene. J Therm Anal Calorim. 2008;93:947–52.

    Article  CAS  Google Scholar 

  38. Hambir S, Bulakh N, Jog JP. Polypropylene/clay nanocomposites: effect of compatibilizer on the thermal, crystallization and dynamic mechanical behavior. Polym Eng Sci. 2002;42:1800–7.

    Article  CAS  Google Scholar 

  39. Xu J-Z, Chen C, Wang Y, Tang H, Li Z-M, Hsiao BS. Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules. 2011;44:2808–18.

    Article  CAS  Google Scholar 

  40. Sahoo RK, Mohanty S, Nayak SK. Effect of nanoclay on the nucleation, crystallization and melting behavior of polypropylene: a study on non-isothermal crystallization kinetics. J Thermoplast Compos Mater. 2016;29:1554–72.

    Article  Google Scholar 

  41. Khalaj M-J, Ahmadi H, Lesankhosh R, Khalaj G. Study of physical and mechanical properties of polypropylene nanocomposites for food packaging application: nano-clay modified with iron nanoparticles. Trends Food Sci Technol. 2016;51:41–8.

    Article  CAS  Google Scholar 

  42. Milani M, Ouijada R, Basso NRS, Graebin AP, Galland GB. Influence of the graphite type on the synthesis of polypropylene/graphene nanocomposites. J Polym Sci Part A Polym Chem. 2012;50:3605–958.

    Article  Google Scholar 

  43. Parameswaranpillai J, Joseph G, Shinu KP, Jose S, Salim NV, Hameed N. Development of hybrid composites for automotive applications: effect of addition of SEBS on the morphology, mechanical, viscoelastic, crystallization and thermal degradation properties of PP/PS–xGnP composites. RSC Adv. 2015;5:25634–41.

    Article  CAS  Google Scholar 

  44. Parameswaranpillai J, Joseph G, Shinu KP, Sreejesh PR, Jose S, Salim NV, Hameed N. The role of SEBS in tailoring the interface between the polymer matrix and exfoliated graphene nanoplatelets in hybrid composites. Mater Chem Phys. 2015;163:182–9.

    Article  CAS  Google Scholar 

  45. Zhang Z, Wang C, Du Y, Zhang J, Mai K. Preparation and investigation of the β-nucleated polypropylene/polystyrene blends. J Appl Sci. 2013;127:1114–21.

    Article  CAS  Google Scholar 

  46. Tjong SC, Bao SP, Liang GD. Polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA: structure-property relationship. J Polym Sci Part B Phys. 2005;43:3112–26.

    Article  CAS  Google Scholar 

  47. Kalantari B, Reza Mohaddes Mojtahedi M, Sharif F, Semnani RR. Flow-induced crystallization of polypropylene in the presence of graphene nanoplatelets and relevant mechanical properties in nanocompsoite fibres. Compos A. 2015;76:203–14.

    Article  CAS  Google Scholar 

  48. Soitong T, Pumchusak J. The relationship of crystallization behavior, mechanical properties, and morphology of polypropylene nanocomposite fibers. J Mater Sci. 2011;46:1697–704.

    Article  CAS  Google Scholar 

  49. Wang L, Sheng J. A kinetic study on the thermal degradation of polypropylene/attapulgite nanocomposites. J Macromol Sci Part B. 2006;45:1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Bodossaki Foundation for the scholarship to Ms. Triantou, Ph.D. Special thanks go to Dr. Dimitrios Korres for assistance in DSC experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna I. Triantou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triantou, M.I., Tarantili, P.A. The effect of organoclay and graphene on the crystallization of PP in ABS/PP blends. J Therm Anal Calorim 129, 743–754 (2017). https://doi.org/10.1007/s10973-017-6195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6195-6

Keywords

Navigation