Skip to main content
Log in

Oxidation studies of Indian reduced activation ferritic martensitic steel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The paper reports the oxidation behaviour of Indian variety of reduced activation ferritic martensitic steel (RAFMS) proposed to be used as a first wall material in test blanket module in ITER and future fusion reactors. Oxidation of first wall can occur in case of a catastrophic leak in the vacuum vessel of fusion reactor. The oxidation of Indian RAFMS was done at 450–650 °C. Long-term oxidation for 25, 50 and 100 h was studied at 550 °C. A mass gain/unit area vs time was plotted and oxidation kinetics determined. The cross section SEM of the oxidised RAFMS was done. The SEM micrographs showed two distinct layers of oxides that have formed with total thickness of around 10 µm. Glancing-angle XRD showed that the top layer is essentially a mixture of magnetite and haematite. A strong enrichment of Cr is visible in a narrow band below the top layer near the scale/alloy interface. It was found that formation of this Cr-rich spinel mid-layer ensures the short-term and long-term oxidation resistance of IN-RAFMS in case of any accidental leak in fusion reactor conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bloom EE. Structural materials for fusion reactors. Nucl Fusion. 1990;30(9):1879.

    Article  CAS  Google Scholar 

  2. Current AK. Status of fusion reactor structural materials R&D. Mater Trans. 2005;46(3):10.

    Google Scholar 

  3. Muroga T, Chen JM, Chernov VM, Kurtz RJ, Le Flem M. Present status of vanadium alloys for fusion applications. J Nucl Mater. 2014;455(1–3):263–8. doi:10.1016/j.jnucmat.2014.06.025.

    Article  CAS  Google Scholar 

  4. Loomis BA, Smith DL. Fusion reactor materials part a vanadium alloys for structural applications in fusion systems: a review of vanadium alloy mechanical and physical properties. J Nucl Mater. 1992;191:84–91. doi:10.1016/S0022-3115(09)80014-7.

    Google Scholar 

  5. Baluc N, Schäublin R, Spätig P, Victoria M. On the potentiality of using ferritic/martensitic steels as structural materials for fusion reactors. Nucl Fusion. 2004;44(1):56.

    Article  CAS  Google Scholar 

  6. Kohyama A, Hishinuma A, Gelles DS, Klueh RL, Dietz W, Ehrlich K. Low-activation ferritic and martensitic steels for fusion application. J Nucl Mater. 1996;233–237(Part 1):138–47. doi:10.1016/S0022-3115(96)00327-3.

    Article  Google Scholar 

  7. Tomastik C, Werner W. Oxidation of beryllium? A scanning Auger investigation. Nucl Fusion. 2005;45(9):1061–5.

    Article  CAS  Google Scholar 

  8. Wong CPC, Malang S, Sawan M, Dagher M, Smolentsev S, Merrill B, et al. An overview of dual coolant Pb–17Li breeder first wall and blanket concept development for the US ITER-TBM design. Fusion Eng Des. 2006;81(1–7):461–7. doi:10.1016/j.fusengdes.2005.05.012.

    Article  CAS  Google Scholar 

  9. ITER. In: ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France. 2016. https://www.iter.org/mach/safety.

  10. Chakraborty P, Kain V, Pradhan PK, Fotedar RK, Krishnamurthy N, Dey GK. Corrosion of Indian RAFMS in Pb–17Li in a rotating disc corrosion test facility at 773 K. Fusion Eng Des. 2015;100:181–9. doi:10.1016/j.fusengdes.2015.05.053.

    Article  CAS  Google Scholar 

  11. Mathiazhagan P, Khanna AS. High temperature oxidation behavior of P91, P92 and E911 alloy steels in dry and wet atmospheres. High Temp Mater Process. 2011;30:43–50.

    Article  CAS  Google Scholar 

  12. Chandra K, Kranzmann A, Saliwan Neumann R, Oder G, Rizzo F. High temperature oxidation behavior of 9–12% Cr ferritic/martensitic steels in a simulated dry oxyfuel environment. Oxid Met. 2014;83(3):291–316. doi:10.1007/s11085-014-9521-4.

    Google Scholar 

  13. Vourlias G, Pistofidis N, Pavlidou E, Chrissafis K. Oxidation behaviour of precipitation hardened steel TG, X-ray, XRD and SEM study. J Therm Anal Calorim. 2009;95(1):63–8. doi:10.1007/s10973-008-9056-5.

    Article  CAS  Google Scholar 

  14. Yuan J, Wu X, Wang W, Zhu S, Wang F. Investigation on the enhanced oxidation of ferritic/martensitic steel P92 in pure steam. Materials. 2014;7(4):2772–83.

    Article  CAS  Google Scholar 

  15. Cheng X, Jiang Z, Monaghan BJ, Wei D, Longbottom RJ, Zhao J, et al. Breakaway oxidation behaviour of ferritic stainless steels at 1150 °C in humid air. Corros Sci. 2016;108:11–22. doi:10.1016/j.corsci.2016.02.042.

    Article  CAS  Google Scholar 

  16. Jonsson T, Karlsson S, Hooshyar H, Sattari M, Liske J, Svensson J-E, et al. Oxidation after breakdown of the chromium-rich scale on stainless steels at high temperature: internal oxidation. Oxid Met. 2016;85(5):509–36. doi:10.1007/s11085-016-9610-7.

    Article  CAS  Google Scholar 

  17. Ehlers J, Young DJ, Smaardijk EJ, Tyagi AK, Penkalla HJ, Singheiser L, et al. Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments. Corros Sci. 2006;48(11):3428–54. doi:10.1016/j.corsci.2006.02.002.

    Article  CAS  Google Scholar 

  18. de Oro Calderon R, Gierl-Mayer C, Danninger H. Application of thermal analysis techniques to study the oxidation/reduction phenomena during sintering of steels containing oxygen-sensitive alloying elements. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5508-5.

    Google Scholar 

  19. Brylewski T, Dąbek J, Przybylski K. Oxidation kinetics study of the iron-based steel for solid oxide fuel cell application. J Therm Anal Calorim. 2004;77(1):207–16.

    Article  CAS  Google Scholar 

  20. Brylewski T, Maruyama T, Nanko M, Przybylski K. TG measurements of the oxidation kinetics of Fe–Cr alloy with regard to its application as a separator in SOFC. J Therm Anal Calorim. 1999;55(2):681–90. doi:10.1023/a:1010130910850.

    Article  CAS  Google Scholar 

  21. Ejenstam J. Corrosion resistant alumina-forming alloys for lead-cooled reactors [TRITA-CHE-Report]. Stockholm: KTH Royal Institute of Technology; 2015.

    Google Scholar 

  22. Żurek J, Wessel E, Niewolak L, Schmitz F, Kern TU, Singheiser L, et al. Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650°C. Corros Sci. 2004;46(9):2301–17. doi:10.1016/j.corsci.2004.01.010.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jyoti Prakash for helping in the TGA analysis and Dr. B. Vishwanath for the SEM-EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Jain, U. & Dey, G.K. Oxidation studies of Indian reduced activation ferritic martensitic steel. J Therm Anal Calorim 128, 819–824 (2017). https://doi.org/10.1007/s10973-016-6009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6009-2

Keywords

Navigation