Skip to main content
Log in

TG/DTA and XRD study on structure and chemical transformation of the Cs–P–W oxides

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the thermoanalytical investigations on structure and chemical transformation of the Cs–P–W oxides are reported. The thermal decomposition and chemical transformations of solid Cs–P–W oxides prepared through evaporating the mixture solution containing a certain amount of Cs2CO3, (NH4)2HPO4 and (NH4)6PW7O24·6H2O were analyzed using the TG/DTA and X-ray diffraction during heating process at a rate of 5 °C min−1. The results showed that the W/Cs molar ratio significantly influences on the structure and chemical transformation of the Cs–P–W oxides. Besides, the influence of the support on the structure transformation is also investigated and found that the cesium tungsten oxides (CsW2O6) and cesium phosphotungstate salts (Cs x H3−x PW12O40) are formed on the surface of γ-Al2O3 and SiO2, respectively, due to different interactions of component with supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cai X, Dai GJ, Tan SZ, Ouyang Y, Ouyang YS, Shi QS. Synergistic antibacterial zinc ions and cerium ions loaded α-zirconium phosphate. Mater Lett. 2012;67:199–201.

    Article  CAS  Google Scholar 

  2. Karlsson M, Andersson C, Hjortkjaer J. Hydroformylation of propene and 1-hexene catalysed by a α-zirconium phosphate supported rhodium-phosphine complex. J Mol Catal A Chem. 2001;166:337–43.

    Article  CAS  Google Scholar 

  3. Parida KM, Sahu BB, Das DP. A comparative study on textural characterization: cation-exchange and sorption properties of crystalline α-zirconium(IV), tin(IV), and titanium(IV) phosphates. J Colloid Interface Sci. 2003;270:436–45.

    Article  Google Scholar 

  4. Wu WW, Fan YJ, Wu XH, Liao S, Huang XF, Li XH. Preparation of nano-sized cerium and titanium pyrophosphates via solid-state reaction at room temperature. Rare Met. 2009;27:550–4.

    Article  Google Scholar 

  5. Lu HY, Yan Y, Tong XQ, Yan WF, Yu JH, Xu RR. The structure-directing effect of n-propylamine in the crystallization of open-framework aluminophosphates. Sci China Chem. 2014;57:127–34.

    Article  CAS  Google Scholar 

  6. Ai M, Muneyama E, Kunishige A, Ohdan K. Effects of methods of preparing iron phosphate and P/Fe compositions on the catalytic performance in oxidative dehydrogenation of isobutyric acid. J Catal. 1993;144:632–5.

    Article  CAS  Google Scholar 

  7. Muneyama E, Kunishige A, Ohdan K, Ai M. Reduction and reoxidation of iron phosphate and its catalytic activity for oxidative dehydrogenation of isobutyric acid. J Catal. 1996;158:378–84.

    Article  CAS  Google Scholar 

  8. Masui T, Hirai H, Imanaka N, Adachi G. Characterization and thermal behavior of amorphous cerium phosphate. Phys Status Solidi (a). 2003;198:364–8.

    Article  CAS  Google Scholar 

  9. Ponomareva VG, Shutova ES. High-temperature behavior of CsH2PO4 and CsH2PO4-SiO2 composites. Solid State Ion. 2007;178:729–34.

    Article  CAS  Google Scholar 

  10. Papandrew AB, Zawodzinski TA. Nickel catalysts for hydrogen evolution from CsH2PO4. J Power Sources. 2014;245:171–4.

    Article  CAS  Google Scholar 

  11. Guo XH, Du KQ, Huang YX, Ge H, Guo QZ, Wang Y, Wang FH. Application of a composite electrolyte in a solid-acid fuel cell system: a micro-arc oxidation alumina support filled with CsH2PO4. Int J Hydrog Energy. 2013;38:16387–93.

    Article  CAS  Google Scholar 

  12. Taninouchi YK, Uda T, Awakura Y. Dehydration of CsH2PO4 at temperatures higher than 260 °C and the ionic conductivity of liquid product. Solid State Ion. 2008;178:1648–53.

    Article  CAS  Google Scholar 

  13. Otomo J, Minagawa N, Wen CJ, Eguchi K, Takahashi H. Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ion. 2003;156:357–69.

    Article  CAS  Google Scholar 

  14. Ikeda A, Haile SM. The thermodynamics and kinetics of the dehydration of CsH2PO4 studied in the presence of SiO2. Solid State Ion. 2012;213:63–71.

    Article  CAS  Google Scholar 

  15. Sun YH, Yan HS, Liu DX, Zhao DF. A comparative study on the dehydration of monoethanolamine over cesium phosphate modified zeolite catalysts. Catal Commun. 2008;9:924–30.

    Article  CAS  Google Scholar 

  16. Zhang GL, Peng ZJ, Li CS. A study of thermal behavior of cesium phosphate. Therm Anal Calorim. 2016;124:1063–70.

    Article  CAS  Google Scholar 

  17. García-Gutiérrez JL, Laredo GC, García-Gutiérrez P, Jiménez-Cruz F. Oxidative desulfurization of diesel using promising heterogeneous tungsten catalysts and hydrogen peroxide. Fuel. 2014;138:118–25.

    Article  Google Scholar 

  18. Gu Q, Zhu W, Xun S, Chang Y, Xiong J, Zhang M, Jiang W, Zhu F, Li H. Preparation of highly dispersed tungsten species within mesoporous silica by ionic liquid and their enhanced catalytic activity for oxidative desulfurization. Fuel. 2014;117:667–73.

    Article  CAS  Google Scholar 

  19. David GB, Stuart LS, Enrique I. Solid acid catalysts based on supported tungsten oxides. Top Catal. 1998;6:87–99.

    Article  Google Scholar 

  20. Maczka M, Macalik B, Hanuza J, Bukowska E. Synthesis and characterization of M2O-MgO-WO3-P2O5 (M = K, Rb, Cs) glass system. J Non-Cryst Solids. 2006;352:5586–93.

    Article  CAS  Google Scholar 

  21. Ding Y, Osaka A, Miura Y. Enhanced surface crystallization of β-barium borate on glass due to ultrasonic treatment. J Am Ceram Soc. 1994;1994(77):749–52.

    Article  Google Scholar 

  22. Takahashi Y, Benino Y, Fujiwara T, Komatsu T. Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5. J Appl Phys. 2001;89:5282–9.

    Article  CAS  Google Scholar 

  23. Sigaev VN, Fanelli E, Pernice P, Despero LE, Sarkisov PD, Aronne A, Bontempi A, Stefanovich SY. Nanostructuring in glasses with composition close to KTiOPO4. J Non-Cryst Solids. 2004;345:676–80.

    Article  Google Scholar 

  24. Bazan JC, Duffy JA, Ingram MD, Mallace MR. Conductivity anomalies in tungstate-phosphate glasses: evidence for an ion-polaron interaction? Solid State Ion. 1996;86–88:497–501.

    Article  Google Scholar 

  25. Mansingh A, Dhawan A, Tandon RP, Vaid JK. DC electrical conduction in tungsten phosphate glasses. J Non-Cryst Solids. 1978;27:309–18.

    Article  CAS  Google Scholar 

  26. Studer F, Lebail A, Raveau B. Local environment of tungsten in mixed valence tungsten phosphate glasses: an EXAFS study. J Solid State Chem. 1986;63:414–23.

    Article  CAS  Google Scholar 

  27. Muthupari S, Rao KJ. Thermal and infrared spectroscopic studies of binary MO3–P2O5 and ternary Na2O-MO3-P2O5 (M = Mo or W) glasses. J Phys Chem Solids. 1996;57:553–61.

    Article  CAS  Google Scholar 

  28. Bergo P, Pontuschka WM, Prison JM. Dielectric properties of P2O5–Na2O–Li2O glasses containing WO3, CoO or Fe2O3. Solid State Commun. 2007;141:545–7.

    Article  CAS  Google Scholar 

  29. Nalim M, Poirier B, Ribeiro SJL, Messaddeq Y, Cescato L. Glasses in the SbPO4–WO3 system. J Non-Cryst Solids. 2007;353:1592–7.

    Article  Google Scholar 

  30. Li CS, Suzuki K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J Therm Anal Calorim. 2009;98:261–6.

    Article  CAS  Google Scholar 

  31. Xie WC, Tang J, Gu XH. Thermal decomposition study of menthyl glycoside by TGA/SDTA, DSC and simultaneous Py–GC–MS analysis. J Anal Appl Pyrolysis. 2007;78:180–4.

    Article  CAS  Google Scholar 

  32. Wang HY, Li CS, Peng ZJ, Zhang SJ. Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 2011;105:157–60.

    Article  CAS  Google Scholar 

  33. Sun XY, Yin SM, Wang HY, Li CS, Zhang SJ. Effect of the addition of cornstalk to coal powder/coal tar Combustion. J Therm Anal Calorim. 2012;109:817–23.

    Article  Google Scholar 

  34. Li CS, Hirabayashi D, Suzuki K. Synthesis of higher surface area mayenite by hydrothermal method. Mater Res Bull. 2011;46:1307–10.

    Article  CAS  Google Scholar 

  35. Hunyadi D, Sajó I, Szilágyi IM. Structure and thermal decomposition of ammonium Metatungstate. J Therm Anal Calorim. 2013;116:329–37.

    Article  Google Scholar 

  36. Madarász J, Szilágyi IM, Hange F, Pokol G. Comparative evolved gas analyses (TG-FTIR, TG/DTA-MS) and solid state (FTIR, XRD) studies on thermal decomposition of ammonium paratungstate tetrahydrate (APT) in air. J Anal Appl Pyrol. 2004;72:197–201.

    Article  Google Scholar 

  37. Szilágyi IM, Sakó I, Király P, Tárkányi G, Tóth AL, Szabó A, Varga-Josepovits K, Madarász J, Pokol G. Phase transformations of ammonium tungsten bronzes. J Therm Anal Calorim. 2009;98:707–16.

    Article  Google Scholar 

  38. Szilágyi IM, Madarász J, Király P, Tárkányi G, Saukko S, Mizsei L, Tóth A, Szabó A, Varga-Josepovits K. Stability and controlled com- position of hexagonal WO3. Chem Mater. 2008;20:4116–25.

    Article  Google Scholar 

  39. Szilágyi IM, Pfeifer J, Balázsi C, Táth AL, Varga-Josepovits K, Madarász J, Pokol G. Thermal stability of hexagonal tungsten trioxide in air. J Therm Anal Calorim. 2008;94:499–505.

    Article  Google Scholar 

  40. Lee K. Hidden nature of the high-temperature phase transitions in crystals if KH2PO4-type: is it a physical change? J Phys Chem Solids. 1995;57:333–42.

    Article  Google Scholar 

  41. Cava RJ, Roth RS, Siegrist T, Hessen B, Krajewski JJ, Peck WF Jr. Cs8.5W15O48 and CsW2O6: members of a new homologous series of cesium tungsten oxides. J Solid State Chem. 1993;103:359–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB251401); the National Natural Science Funds for Distinguished Young Scholar (No. 21425625); and National Science Fund for Excellent Young Scholars (21422607).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Peng or Chunshan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Wu, H., Peng, Z. et al. TG/DTA and XRD study on structure and chemical transformation of the Cs–P–W oxides. J Therm Anal Calorim 128, 947–956 (2017). https://doi.org/10.1007/s10973-016-5990-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5990-9

Keywords

Navigation