Skip to main content
Log in

Study on the thermal decomposition kinetics and flammability performance of a flame-retardant leather

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A flame-retardant leather (FR-leather) was prepared from blue wet leather treated with tetrakis hydroxymethyl phosphonium–melamine–pentaerythritol diphosphorate (THPM). An optimized genetic algorithm search method driven by Kissinger method was employed to estimate pyrolysis kinetic mechanism and the thermal stability of FR-leather. It is shown that the thermal decomposition of leather in nitrogen is a three-step kinetic scheme composed of the pyrolysis of triglyceride, multi-complexation collagen and single-complexation collagen, and the activation energies of the corresponding components of FR-leather are, respectively, 84.1, 172.6 and 253.6 kJ mol−1. Accordingly, those of blank leather are 69.3, 161.3 and 105.4 kJ mol−1. Meanwhile, cone calorimeter test demonstrates that when leather was treated with THPM, total heat release and total smoke production are decreased, respectively, 16.2 and 54.5%, and time to ignition increased from 20 s of blank leather to 26 s of FR-leather. The results of limit oxygen index value increased from 26.1% of blank leather to 32.9% of FR-leather, and the results of UL-94 vertical burning tests of FR-leather are significantly decreased, such as flame combustion time and length of carbonization decreased 88% and 72%, respectively. It is shown that the novel THPM material obviously improved the thermal stability and flame-retardant properties of leather fibers; at the same time, it has good smoke suppression effect and is an excellent flame retardant suitable for leather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhuang LH, Wang GW. Discussion on leather flame retarding treatment and techniques. Leather Sci Eng. 2005;15(3):30.

    CAS  Google Scholar 

  2. Huang Z, Li LX, Wang YH, Lin YZ, Chen WY. Performance of flame retardants on leather. J Soc Leather Technol Chem. 2005;89(6):225–31.

    CAS  Google Scholar 

  3. Mohamed OA, Abdel-Mohdy FA. Preparation of flame-retardant leather pretreated with pyrovatex CP. J Appl Polym Sci. 2006;99(5):2039–43.

    Article  CAS  Google Scholar 

  4. Ling HJ, Yang JW, Xiang L, Li FY, Luo ML, Li LX. The synthesis and application of a high performance amino resin nanocomposite as leather flame retardant. J Soc Leather Technol Chem. 2012;96(1):5–10.

    CAS  Google Scholar 

  5. Sanchez-Olivares G, Sanchez-Solis A, Calderas F, Medina-Torres L, Manero O, Di Blasio A, Alongi J. Sodium montmorillonite effect on the morphology, thermal, flame retardant and mechanical properties of semi-finished leather. Appl Clay Sci. 2014;102:254–60.

    Article  CAS  Google Scholar 

  6. Jiang YP, Li JX, Li B, Liu HY, Li ZJ, Li LX. Study on a novel multifunctional nanocomposite as flame retardant of leather. Polym Degrad Stab. 2015;115:110–6.

    Article  CAS  Google Scholar 

  7. Yang LT, Li Y, Wu YJ, Deng LL, Liu W, Ma CP, Li LX. Thermal degradation kinetics of leather fibers treated with fire-retardant melamine resin. J Therm Anal Calorim. 2015;123(1):413–20.

    Article  Google Scholar 

  8. Li B, Li JX, Li LX, Jiang YP, Li ZJ. Synthesis and application of a novel functional material as leather flame retardant. J Am Leather Chem As. 2014;109(7):239–45.

    Google Scholar 

  9. Cui HW, Jiu JT, Sugahara T, Nagao S, Suganuma K, Uchida H, Schroder KA. Using the Friedman method to study the thermal degradation kinetics of photonically cured electrically conductive adhesives. J Therm Anal Calorim. 2015;119:425–33.

    Article  CAS  Google Scholar 

  10. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  11. Vincent BJ, Natarajan B. Kinetics of thermal degradation of water borne polyurethane dispersion containing polycaprolactone with either isophorone diisocyanate or metatetramethyl xylene diisocyanate. J Therm Anal Calorim. 2015;119:1373–9.

    Article  CAS  Google Scholar 

  12. Ren YL, Cheng BW, Jiang AB, Lu YC, Xu L. Thermal degradation kinetics of poly(O, O-diethyl-O-allylthiophosphate-co-acrylonitrile) in nitrogen. J Appl Polym Sci. 2010;115(6):3705–9.

    Article  CAS  Google Scholar 

  13. Flynn JH, Wall LA. General treatment of thermogravimetry of polymers. J Res NBS A Phys Ch. 1966;70:487–9.

    Article  CAS  Google Scholar 

  14. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  15. Li KY, Huang XY, Fleischmann C, Rein G, Ji J. Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energ Fuel. 2014;28(9):6130–9.

    Article  CAS  Google Scholar 

  16. Li KY, Pau DSW, Hou YN, Ji J. Modeling pyrolysis of charring materials: determining kinetic properties and heat of pyrolysis of medium density fiberboard. Ind Eng Chem Res. 2014;53(1):141–9.

    Article  CAS  Google Scholar 

  17. Wang YL, Zhao FQ, Ji YP, Yan QL, Yi JH, Xu SY, Luo Y, Lu XM. Synthesis and thermal behaviors of 1,8-dihydroxy-4,5-dinitroanthraquinone barium salt. J Anal Appl Pyrolysis. 2014;105:295–300.

    Article  CAS  Google Scholar 

  18. Islam MA, Asif M, Hameed BH. Pyrolysis kinetics of raw and hydrothermally carbonized Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis. Bioresour Technol. 2015;179:227–33.

    Article  CAS  Google Scholar 

  19. Li J, Gong Y, Li R, Yu XH, Chen WY, Li LX. Research and application of the montmorillonite-amino resin nano-composite flame retardant material. China Leather (Chin). 2008;37(7):43–6.

    Google Scholar 

  20. Wu WX, Mei YF, Zhang L, Liu RH, Cai JM. Effective activation energies of lignocellulosic biomass pyrolysis. Energy Fuel. 2014;28(6):3916–23.

    Article  CAS  Google Scholar 

  21. Pau DSW, Fleischmann CM, Spearpoint MJ, Li KY. Determination of kinetic properties of polyurethane foam decomposition for pyrolysis modelling. J Fire Sci. 2013;31(4):356–84.

    Article  CAS  Google Scholar 

  22. Liao LL, Chen WY, Shan ZH, Dan WH. Tanning chemistry and technology (in Chinese). Beijing: Science Press; 2005.

    Google Scholar 

  23. Foster JA. Evolutionary computation. Nat Rev Genet. 2001;2(6):428–36.

    Article  CAS  Google Scholar 

  24. Lautenberger C, Rein G, Fernandez-Pello C. The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J. 2006;41(3):204–14.

    Article  Google Scholar 

  25. Saha B, Reddy PK, Ghoshal AK. Hybrid genetic algorithm to find the best model and the globally optimized overall kinetics parameters for thermal decomposition of plastics. Chem Eng J. 2008;138:20–9.

    Article  CAS  Google Scholar 

  26. Gao M, Wu WH, Liu S, Wang YX, Shen TF. Thermal degradation and flame retardancy of rigid polyurethane foams containing a novel intumescent flame retardant. J Therm Anal Calorim. 2014;117:1419–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Item NO. 21176160). The authors deeply appreciate Dr. Kaiyuan Li from the University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Li, J., Liu, F. et al. Study on the thermal decomposition kinetics and flammability performance of a flame-retardant leather. J Therm Anal Calorim 128, 1107–1116 (2017). https://doi.org/10.1007/s10973-016-5974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5974-9

Keywords

Navigation