Skip to main content
Log in

Synergistic effect of silica sol and K2CO3 on flame-retardant and thermal properties of wood

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, silica sol (SiO2 sol) and K2CO3 were used as flame retardants for wood. The synergistic effect of SiO2 sol and K2CO3 on the flame retardancy, leaching resistance, and thermal properties of wood was investigated. The limiting oxygen index results revealed a significant improvement in the flame retardancy and leaching resistance of the wood sample treated with K2CO3 and SiO2 sol using the double bath technique. The thermal analysis results showed that the synergistic effect of K2CO3 and the SiO2 sol effectively prolonged the degradation of the wood sample during the charring stage and improved the stability of the char residue. The thermogravimetry–mass spectrometry analysis and scanning electron microscopy results showed that K2CO3 catalyzed the degradation reaction of the wood sample at lower temperatures resulting in an increase in the water and carbon dioxide output, and the SiO2 sol formed a compact and melted barrier on the surface of the char residue, which hindered the transfer of heat and combustible gases in the condensed phase. Thus, the combination of K2CO3 and SiO2 sol proves to be a promising flame-retardant system for wood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sathasivam PK, Susumu T, Hiroshi A, Seiji K. Flame retardancy of clay–sodium silicate composite coatings on wood for construction. RSC Adv. 2015;5:34109–16.

    Article  Google Scholar 

  2. Zhu X, Wu Y, Tian C, Qing Y, Yao C. Synergistic effect of nanosilica aerogel with phosphorus flame retardants on improving flame retardancy and leaching resistance of wood. J Nanomater. 2014;. doi:10.1155/2014/867106.

    Google Scholar 

  3. Yuksel M, Baysal E, Toker H, Simsek H. Combustion characteristics of oriental beech wood impregnated with commonly used borates. Wood Res. 2014;59(1):39–49.

    CAS  Google Scholar 

  4. Giudice CA, Alfieri PV, Canosa G. Siloxanes synthesized “in situ” by sol-gel process for fire control in wood of Araucaria angustifolia. Fire Saf J. 2013;61:348–54.

    Article  CAS  Google Scholar 

  5. Arora S, Kumar M, Kumar M. Catalytic effect of bases in impregnation of guanidine nitrate on Poplar (Populus) wood. J Therm Anal Calorim. 2012;107:1277–86.

    Article  CAS  Google Scholar 

  6. Park HJ, Wen MY, Cheon SH, Kang CW, Matsumura J. Fire retardant performance and thermal degradation of Korean pine treated with fire retardant chemical. J Fac Agric Kyushu Univ. 2015;60:183–9.

    CAS  Google Scholar 

  7. Jiang J, Li J, Hu J, Fan D. Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Constr Build Mater. 2010;24:2633–7.

    Article  Google Scholar 

  8. Sun L, Wu Q, Xie Y, Song K, Lee S, Wang Q. Thermal decomposition of fire-retarded wood flour/polypropylene composites. J Therm Anal Calorim. 2016;123:309–18.

    Article  CAS  Google Scholar 

  9. Sha L, Chen K. Surface modification of ammonium polyphosphate-diatomaceous earth composite filler and its application in flame-retardant paper. J Therm Anal Calorim. 2016;123:339–47.

    Article  CAS  Google Scholar 

  10. Marosi G, Márton A, Anna P, Bertalan G, Marosfoi B, Szép A. Ceramic precursor in flame retardant systems. Polym Degrad Stab. 2002;77:259–65.

    Article  CAS  Google Scholar 

  11. Pereyra AM, Giudice CA. Flame-retardant impregnants for woods based on alkaline silicates. Fire Saf J. 2009;44(4):497–503.

    Article  CAS  Google Scholar 

  12. Canosa G, Alfieri PV, Giudice CA. Nano lithium silicates as flame-retardant impregnants for Pinus radiata. J Fire Sci. 2011;29(5):431–41.

    Article  CAS  Google Scholar 

  13. Silvo H, Majda SS, Karin SK, Marjan B, Janez J, Miran G. Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polym Degrad Stab. 2007;92(11):1957–65.

    Article  Google Scholar 

  14. Ozkaya K, Ilce AC, Burdurlu E, Aslan S. The effect of potassium carbonate borax and wolmanit on the burning characteristics of oriented strandboard (OSB). Construct Build Mater. 2007;21:1457–62.

    Article  Google Scholar 

  15. Dobele G, Urbanovich I, Zhurins A, Kampars V, Meier D. Application of analytical pyrolysis for wood fire protection control. J Anal Appl Pyrolysis. 2007;79:47–51.

    Article  CAS  Google Scholar 

  16. Hongqiang Q, Weihong W, Hongjuan W, Jixing X, Jianzhong X. Study on the effects of flame retardants on the thermal decomposition of wood by TG–MS. J Therm Anal Calorim. 2011;103(3):935–42.

    Article  Google Scholar 

  17. Jinxue J, Jianzhang L, Qiang G. Effect of flame retardant treatment on dimensional stability and thermal degradation of wood. Constr Build Mater. 2015;75:74–81.

    Article  Google Scholar 

  18. Yanjun X, Na L, Qingwen W, Zefang X, Fengqiang W, Yanhua Z, Militz H. Combustion behavior of oak wood (Quercus mongolica L.) modified by 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU). Holzforschung. 2014;68:881–7.

    Google Scholar 

  19. Mahltig B, Swaboda C, Roessler A, Bottcher H. Functionalising wood by nanosol application. J Mater Chem. 2008;18(27):3180–92.

    Article  CAS  Google Scholar 

  20. Xiaoqian Q, Qingqing Y, Junying L. Effects of SiO2 sol on leachability of wood impregnated with disodium octaborate tetrahydrate. Rare Metal Mat Eng. 2012;41:668–71.

    Google Scholar 

  21. Takeshi F, Liang L, Sadanobu K. Leachability, decay, and termite resistance of wood treated with metaborates. J Wood Sci. 2003;49:344–8.

    Article  Google Scholar 

  22. Yunchu H, Peijang Z, Songsheng Q. TG–DTA studies on wood treated with flame-retardants. Holz als Roh-und Werkstoff. 2000;58:35–8.

    Article  CAS  Google Scholar 

  23. Liodakis S, Bakirtzis D, Dimitrakopoulos A. Ignition characteristics of forest species in relation to thermal analysis data. Thermochim Acta. 2002;390(1–2):83–91.

    Article  CAS  Google Scholar 

  24. Kaur B, Gur IS, Bhatnagar HL. Studies on thermal degradation of cellulose and cellulose phosphoramides. J Appl Polym Sci. 1986;31:667–73.

    Article  CAS  Google Scholar 

  25. Dimitrakopoulos AP, Panov PI. Pyric properties of some dominant mediterranean vegetation species. Int J Wildland Fire. 2001;10(1):23–7.

    Article  Google Scholar 

  26. Sunol JJ, Taurina J, Carrello F, Colom X. Comparison of the thermal behavior of three cellulose fibers mercerized or submitted to solar degradation. J Therm Anal Calorim. 2003;72:753–8.

    Article  CAS  Google Scholar 

  27. Liodakis S, Bakirtzis D, Dimitrakopoulos AP. Auto ignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochimi Acta. 2003;399:31–42.

    Article  CAS  Google Scholar 

  28. Liu Q, Lv C, Yang Y, He F, Ling L. Investigation on the effects of fire retardants on the thermal decomposition of wood-derived rayon fiber in an inertatmosphere by thermogravimetry–mass spectrometry. Thermochimi Acta. 2004;419:205–9.

    Article  CAS  Google Scholar 

  29. Kaloustian J, Pauli AM, Pastor J. Kinetic study of the thermal decompositions of biopolymer sextracted from various plants. J Therm Anal Calorim. 2001;63:7–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Natural Science Foundation of China (Grant No. 21306035) and the Key Basic Research Project of Hebei Province (Grant No. 16961402D).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihong Wu or Hongqiang Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Wu, W., Zhang, M. et al. Synergistic effect of silica sol and K2CO3 on flame-retardant and thermal properties of wood. J Therm Anal Calorim 128, 825–832 (2017). https://doi.org/10.1007/s10973-016-5947-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5947-z

Keywords

Navigation